Products of sequential convergence properties

Tsugunori Nogura

Czechoslovak Mathematical Journal (1989)

  • Volume: 39, Issue: 2, page 262-279
  • ISSN: 0011-4642

How to cite

top

Nogura, Tsugunori. "Products of sequential convergence properties." Czechoslovak Mathematical Journal 39.2 (1989): 262-279. <http://eudml.org/doc/13776>.

@article{Nogura1989,
author = {Nogura, Tsugunori},
journal = {Czechoslovak Mathematical Journal},
keywords = {-space; N; CH; inverse limit; (countably) productive; (strongly) Fréchet spaces},
language = {eng},
number = {2},
pages = {262-279},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Products of sequential convergence properties},
url = {http://eudml.org/doc/13776},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Nogura, Tsugunori
TI - Products of sequential convergence properties
JO - Czechoslovak Mathematical Journal
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 39
IS - 2
SP - 262
EP - 279
LA - eng
KW - -space; N; CH; inverse limit; (countably) productive; (strongly) Fréchet spaces
UR - http://eudml.org/doc/13776
ER -

References

top
  1. A. V. Arhangel'skii, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Dokl. 13 (1972) 265-268. (1972) MR0394575
  2. A. V. Arhangel'skii, The frequency spectrum of a topological space and the product operation, Trans. Moscow Math. Soc. (1981) 163-200. (1981) 
  3. S. P. Franklin, 10.4064/fm-57-1-107-115, Fund. Math. 57 (1965) 107-115. (1965) Zbl0132.17802MR0180954DOI10.4064/fm-57-1-107-115
  4. R. Frič, P. Vojtáš, Diagonal conditions in sequential convergence, Proc. Conf. on Convergence, Bechyně, 1984. Akademie-Verlag Berlin 1985. (1984) MR0835474
  5. G. Gruenhage, 10.1016/0016-660X(76)90024-6, Gen. Topology Appl. 6 (1976) 339-352. (1976) MR0413049DOI10.1016/0016-660X(76)90024-6
  6. G. Gruenhage, A note on the product of Fréchet spaces, Topology Proc. 3 (1978) 109-115. (1978) MR0540482
  7. V. I. Malyhin, On countable space having no bicompactification of countable tightness, Soviet Math. Dokl. 13 (1972) 1407-1411. (1972) MR0320981
  8. E. Michael, 10.1016/0016-660X(72)90040-2, Gen. Topology Appl. 2 (1972) 91-138. (1972) Zbl0238.54009MR0309045DOI10.1016/0016-660X(72)90040-2
  9. N. Noble, 10.1090/S0002-9947-1971-0283749-X, Trans. Amer. Soc. 160 (1971) 169-183. (1971) Zbl0233.54004MR0283749DOI10.1090/S0002-9947-1971-0283749-X
  10. T. Nogura, 10.1016/0166-8641(85)90035-5, Topology Appl. 20 (1985) 59-66. (1985) MR0798445DOI10.1016/0166-8641(85)90035-5
  11. T. Nogura, Products of α i -spaces, Topology Appl. 21 (1985) 251-259. (1985) 
  12. T. Nogura, 10.1016/0166-8641(87)90076-9, Topology Appl. 25 (1987), 75-80. (1987) MR0874979DOI10.1016/0166-8641(87)90076-9
  13. R. C. Olson, 10.1016/0016-660X(74)90002-6, Gen. Topology Appl. 4 (1974) 1-28. (1974) Zbl0278.54008MR0365463DOI10.1016/0016-660X(74)90002-6
  14. P. Simon, A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolinae 21 (1980) 749-753. (1980) Zbl0466.54022MR0597764
  15. F. Siwiec, 10.1016/0016-660X(71)90120-6, Gen. Topology Appl. 1 (1971) 143-154. (1971) Zbl0218.54016MR0288737DOI10.1016/0016-660X(71)90120-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.