Examples of sequential topological groups under the continuum hypothesis

Alexander Shibakov

Fundamenta Mathematicae (1996)

  • Volume: 151, Issue: 2, page 107-120
  • ISSN: 0016-2736

Abstract

top
Using CH we construct examples of sequential topological groups: 1. a pair of countable Fréchet topological groups whose product is sequential but is not Fréchet, 2. a countable Fréchet and α 1 topological group which contains no copy of the rationals.

How to cite

top

Shibakov, Alexander. "Examples of sequential topological groups under the continuum hypothesis." Fundamenta Mathematicae 151.2 (1996): 107-120. <http://eudml.org/doc/212184>.

@article{Shibakov1996,
abstract = {Using CH we construct examples of sequential topological groups: 1. a pair of countable Fréchet topological groups whose product is sequential but is not Fréchet, 2. a countable Fréchet and $α_1$ topological group which contains no copy of the rationals.},
author = {Shibakov, Alexander},
journal = {Fundamenta Mathematicae},
keywords = {topological group; sequential space; Fréchet space},
language = {eng},
number = {2},
pages = {107-120},
title = {Examples of sequential topological groups under the continuum hypothesis},
url = {http://eudml.org/doc/212184},
volume = {151},
year = {1996},
}

TY - JOUR
AU - Shibakov, Alexander
TI - Examples of sequential topological groups under the continuum hypothesis
JO - Fundamenta Mathematicae
PY - 1996
VL - 151
IS - 2
SP - 107
EP - 120
AB - Using CH we construct examples of sequential topological groups: 1. a pair of countable Fréchet topological groups whose product is sequential but is not Fréchet, 2. a countable Fréchet and $α_1$ topological group which contains no copy of the rationals.
LA - eng
KW - topological group; sequential space; Fréchet space
UR - http://eudml.org/doc/212184
ER -

References

top
  1. [A1] A. Arkhangel'skiĭ, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Dokl. 13 (1972), 265-268. 
  2. [A2] A. Arkhangel'skiĭ, Topological properties in topological groups, in: XVIII All Union Algebraic Conference, Kishinev, 1985 (in Russian). 
  3. [A3] A. Arkhangel'skiĭ, The frequency spectrum of a topological space and the product operation, Trans. Moscow Math. Soc. 2 (1981), 163-200. 
  4. [AF] A. Arkhangel'skiĭ and S. Franklin, Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313-320. Zbl0167.51102
  5. [BR] T. Boehme and M. Rosenfeld, An example of two compact Fréchet Hausdorff spaces whose product is not Fréchet, J. London Math. Soc. 8 (1974), 339-344. Zbl0289.54026
  6. [BM] D. Burke and E. Michael, On a theorem of V. V. Filippov, Israel J. Math. 11 (1972), 394-397. Zbl0236.54015
  7. [vD] E. K. van Douwen, The product of a Fréchet space and a metrizable space, Topology Appl. 47 (1992), 163-164. Zbl0759.54013
  8. [DS] A. Dow and J. Steprāns, Countable Fréchet α 1 -spaces may be first-countable, Arch. Math. Logic 32 (1992), 33-50. Zbl0798.03052
  9. [EKN] K. Eda, S. Kamo and T. Nogura, Spaces which contain a copy of the rationals, J. Math. Soc. Japan 42 (1990), 103-112. Zbl0709.54012
  10. [F] S. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115. Zbl0132.17802
  11. [GMT] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (1984), 303-332. Zbl0561.54016
  12. [MS] V. Malykhin and B. Shapirovskiĭ, Martin's axiom and properties of topological spaces, Soviet Math. Dokl. 14 (1973), 1746-1751. Zbl0294.54006
  13. [M1] E. Michael, 0 -spaces, J. Math. Mech. 15 (1966), 983-1002. 
  14. [M2] E. Michael, A quintuple quotient quest, Gen. Topology Appl. 2 (1972), 91-138. Zbl0238.54009
  15. [No1] T. Nogura, The product of α i -spaces, Topology Appl. 21 (1985), 251-259. 
  16. [No2] T. Nogura, Products of sequential convergence properties, Czechoslovak Math. J. 39 (1989), 262-279. Zbl0691.54017
  17. [NST1] T. Nogura, D. Shakhmatov and Y. Tanaka, Metrizability of topological groups having weak topologies with respect to good covers, Topology Appl. 54 (1993), 203-212. Zbl0808.54026
  18. [NST2] T. Nogura, D. Shakhmatov and Y. Tanaka, α 4 -property versus A-property in topological spaces and groups, to appear. Zbl0902.22001
  19. [NT] T. Nogura and Y. Tanaka, Spaces which contain a copy of S ω or S 2 and their applications, Topology Appl. 30 (1988), 51-62. Zbl0657.54021
  20. [N] P. J. Nyikos, Metrizability and Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), 793-801. Zbl0474.22001
  21. [O] R. C. Olson, Bi-quotient maps, countably bi-sequential spaces, and related topics, Gen. Topology Appl. 4 (1974), 1-28. Zbl0278.54008
  22. [R] M. Rajagopalan, Sequential order and spaces S n , Proc. Amer. Math. Soc. 54 (1976), 433-438. Zbl0305.54027
  23. [Sm] D. Shakhmatov, α i -properties in Fréchet-Urysohn topological groups, Topology Proc. 15 (1990), 143-183. Zbl0754.54015
  24. [Sh] A. Shibakov, A sequential group topology on rationals with intermediate sequential order, Proc. Amer. Math. Soc. 124 (1996), 2599-2607. Zbl0865.54022
  25. [Si] P. Simon, A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolin. 21 (1980), 749-753. Zbl0466.54022
  26. [T] S. Todorčević, Some applications of S- and L-combinatorics, in: The Work of Mary Ellen Rudin, F. D. Tall (ed.), Ann. New York Acad. Sci. 705, 1993, 130-167. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.