# Examples of sequential topological groups under the continuum hypothesis

Fundamenta Mathematicae (1996)

- Volume: 151, Issue: 2, page 107-120
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topShibakov, Alexander. "Examples of sequential topological groups under the continuum hypothesis." Fundamenta Mathematicae 151.2 (1996): 107-120. <http://eudml.org/doc/212184>.

@article{Shibakov1996,

abstract = {Using CH we construct examples of sequential topological groups: 1. a pair of countable Fréchet topological groups whose product is sequential but is not Fréchet, 2. a countable Fréchet and $α_1$ topological group which contains no copy of the rationals.},

author = {Shibakov, Alexander},

journal = {Fundamenta Mathematicae},

keywords = {topological group; sequential space; Fréchet space},

language = {eng},

number = {2},

pages = {107-120},

title = {Examples of sequential topological groups under the continuum hypothesis},

url = {http://eudml.org/doc/212184},

volume = {151},

year = {1996},

}

TY - JOUR

AU - Shibakov, Alexander

TI - Examples of sequential topological groups under the continuum hypothesis

JO - Fundamenta Mathematicae

PY - 1996

VL - 151

IS - 2

SP - 107

EP - 120

AB - Using CH we construct examples of sequential topological groups: 1. a pair of countable Fréchet topological groups whose product is sequential but is not Fréchet, 2. a countable Fréchet and $α_1$ topological group which contains no copy of the rationals.

LA - eng

KW - topological group; sequential space; Fréchet space

UR - http://eudml.org/doc/212184

ER -

## References

top- [A1] A. Arkhangel'skiĭ, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Dokl. 13 (1972), 265-268.
- [A2] A. Arkhangel'skiĭ, Topological properties in topological groups, in: XVIII All Union Algebraic Conference, Kishinev, 1985 (in Russian).
- [A3] A. Arkhangel'skiĭ, The frequency spectrum of a topological space and the product operation, Trans. Moscow Math. Soc. 2 (1981), 163-200.
- [AF] A. Arkhangel'skiĭ and S. Franklin, Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313-320. Zbl0167.51102
- [BR] T. Boehme and M. Rosenfeld, An example of two compact Fréchet Hausdorff spaces whose product is not Fréchet, J. London Math. Soc. 8 (1974), 339-344. Zbl0289.54026
- [BM] D. Burke and E. Michael, On a theorem of V. V. Filippov, Israel J. Math. 11 (1972), 394-397. Zbl0236.54015
- [vD] E. K. van Douwen, The product of a Fréchet space and a metrizable space, Topology Appl. 47 (1992), 163-164. Zbl0759.54013
- [DS] A. Dow and J. Steprāns, Countable Fréchet ${\alpha}_{1}$-spaces may be first-countable, Arch. Math. Logic 32 (1992), 33-50. Zbl0798.03052
- [EKN] K. Eda, S. Kamo and T. Nogura, Spaces which contain a copy of the rationals, J. Math. Soc. Japan 42 (1990), 103-112. Zbl0709.54012
- [F] S. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115. Zbl0132.17802
- [GMT] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (1984), 303-332. Zbl0561.54016
- [MS] V. Malykhin and B. Shapirovskiĭ, Martin's axiom and properties of topological spaces, Soviet Math. Dokl. 14 (1973), 1746-1751. Zbl0294.54006
- [M1] E. Michael, ${\aleph}_{0}$-spaces, J. Math. Mech. 15 (1966), 983-1002.
- [M2] E. Michael, A quintuple quotient quest, Gen. Topology Appl. 2 (1972), 91-138. Zbl0238.54009
- [No1] T. Nogura, The product of $\u27e8{\alpha}_{i}\u27e9$-spaces, Topology Appl. 21 (1985), 251-259.
- [No2] T. Nogura, Products of sequential convergence properties, Czechoslovak Math. J. 39 (1989), 262-279. Zbl0691.54017
- [NST1] T. Nogura, D. Shakhmatov and Y. Tanaka, Metrizability of topological groups having weak topologies with respect to good covers, Topology Appl. 54 (1993), 203-212. Zbl0808.54026
- [NST2] T. Nogura, D. Shakhmatov and Y. Tanaka, ${\alpha}_{4}$-property versus A-property in topological spaces and groups, to appear. Zbl0902.22001
- [NT] T. Nogura and Y. Tanaka, Spaces which contain a copy of ${S}_{\omega}$ or ${S}_{2}$ and their applications, Topology Appl. 30 (1988), 51-62. Zbl0657.54021
- [N] P. J. Nyikos, Metrizability and Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), 793-801. Zbl0474.22001
- [O] R. C. Olson, Bi-quotient maps, countably bi-sequential spaces, and related topics, Gen. Topology Appl. 4 (1974), 1-28. Zbl0278.54008
- [R] M. Rajagopalan, Sequential order and spaces ${S}_{n}$, Proc. Amer. Math. Soc. 54 (1976), 433-438. Zbl0305.54027
- [Sm] D. Shakhmatov, ${\alpha}_{i}$-properties in Fréchet-Urysohn topological groups, Topology Proc. 15 (1990), 143-183. Zbl0754.54015
- [Sh] A. Shibakov, A sequential group topology on rationals with intermediate sequential order, Proc. Amer. Math. Soc. 124 (1996), 2599-2607. Zbl0865.54022
- [Si] P. Simon, A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolin. 21 (1980), 749-753. Zbl0466.54022
- [T] S. Todorčević, Some applications of S- and L-combinatorics, in: The Work of Mary Ellen Rudin, F. D. Tall (ed.), Ann. New York Acad. Sci. 705, 1993, 130-167.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.