Extension of an integral inequality of C. Miranda and applications to the elliptic equations with discontinuous coefficients

Albino Canfora

Czechoslovak Mathematical Journal (1989)

  • Volume: 39, Issue: 3, page 385-422
  • ISSN: 0011-4642

How to cite

top

Canfora, Albino. "Extension of an integral inequality of C. Miranda and applications to the elliptic equations with discontinuous coefficients." Czechoslovak Mathematical Journal 39.3 (1989): 385-422. <http://eudml.org/doc/13786>.

@article{Canfora1989,
author = {Canfora, Albino},
journal = {Czechoslovak Mathematical Journal},
keywords = {existence; Dirichlet problem},
language = {eng},
number = {3},
pages = {385-422},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extension of an integral inequality of C. Miranda and applications to the elliptic equations with discontinuous coefficients},
url = {http://eudml.org/doc/13786},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Canfora, Albino
TI - Extension of an integral inequality of C. Miranda and applications to the elliptic equations with discontinuous coefficients
JO - Czechoslovak Mathematical Journal
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 39
IS - 3
SP - 385
EP - 422
LA - eng
KW - existence; Dirichlet problem
UR - http://eudml.org/doc/13786
ER -

References

top
  1. R. A. Adams, Sobolev Spaces, Academic Press, 1975. (1975) Zbl0314.46030MR0450957
  2. A. Alvino G. Trombetti, Second order elliptic equations whose coefficients have their first derivatives weakly- L n , Ann. Mat. Pura Appl. (IV), Vol. CXXXVIII, pp. 331-340, 1984. (1984) Zbl0579.35019MR0779550
  3. P. Buonocore, Second order elliptic equations whose coefficients have their first derivatives in the Lorenz spaces, Mathematical Depart. of Naples University, Preprint n. 41, 1983. (1983) Zbl0586.35036MR0766678
  4. E. Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche di Matematica, Vol. VIII, pp. 24-51, 1959. (1959) Zbl0199.44701MR0109295
  5. D. Gilbarg N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1977. (1977) Zbl0361.35003MR0473443
  6. G. H. Hardy J. E. Littlewood G. Polya, Inequalities, Cambridge University Press, 1964. (1964) Zbl0010.10703
  7. C. Miranda, Su alcune diseguaglianze integrali, Memorie Accademia dei Lincei, 7, pp. 1-14, 1963. (1963) Zbl0196.41402MR0188578
  8. C. Miranda, 10.1007/BF02412185, Ann. Mat. Pura Appl. 63, pp. 353-386, 1963. (1963) Zbl0156.34001MR0170090DOI10.1007/BF02412185
  9. C. Miranda, Equazioni lineari ellittiche di tipo non variazionale, Rend. Sem. Mat. Milano, 32, 1963. (1963) Zbl0156.33902MR0164127
  10. J. Nečas, Les méthodes directes en théorie des équationes elliptiques, Masson et Cie, Editeurs Paris, Academia Editeurs Prague, 1967. (1967) MR0227584
  11. L. Nirenberg, On elliptic partial differential equations, Annali Sc. Normale Sup. Pisa, 13, pp. 123-131, 1959. (1959) Zbl0088.07601MR0109940
  12. C. G. Simader, On Dirichleťs boundary value problem, Springer-Verlag, Berlin, 1972. (1972) MR0473503
  13. G. Talenti, Elliptic equations and rearrangements, Annali Sc. Normale Sup. Pisa, 3, pp. 697-718, 1976. (1976) Zbl0341.35031MR0601601
  14. G. Talenti, 10.1007/BF02414375, Ann. Mat. Pura Appl. 69, pp. 285-304, 1965. (1965) Zbl0145.36602MR0201816DOI10.1007/BF02414375
  15. M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche di Matematica, Vol. XVIII, pp. 3-24, 1969. (1969) Zbl0182.16802MR0415302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.