Hyperarchimedian divisibility semigroups

Bruno Bosbach

Czechoslovak Mathematical Journal (1989)

  • Volume: 39, Issue: 3, page 528-543
  • ISSN: 0011-4642

How to cite

top

Bosbach, Bruno. "Hyperarchimedische Teilbarkeitshalbgruppen." Czechoslovak Mathematical Journal 39.3 (1989): 528-543. <http://eudml.org/doc/13799>.

@article{Bosbach1989,
author = {Bosbach, Bruno},
journal = {Czechoslovak Mathematical Journal},
keywords = {representation; factorization; divisibility semigroup; hyper-archimedean; structure theorems},
language = {ger},
number = {3},
pages = {528-543},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hyperarchimedische Teilbarkeitshalbgruppen},
url = {http://eudml.org/doc/13799},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Bosbach, Bruno
TI - Hyperarchimedische Teilbarkeitshalbgruppen
JO - Czechoslovak Mathematical Journal
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 39
IS - 3
SP - 528
EP - 543
LA - ger
KW - representation; factorization; divisibility semigroup; hyper-archimedean; structure theorems
UR - http://eudml.org/doc/13799
ER -

References

top
  1. Amemiya I., A general spectral theory in semi-ordered linear spaces, J. Fac. Sci. Hokka. Uni. 12 (1953), 111-156. (1953) Zbl0053.25802MR0056853
  2. Baker K. A., Topological methods in the algebraic theory of vector lattices, Thesis, Harvard University 1966. (1966) 
  3. Bigard A., Groupes archimédiens aet hyper-archimédiens, Séminaire Dubreil-Pisot (1967 - 1968), No. 2. (1967) 
  4. Bigard A., Contribution à la théorie des groupes réticulés, These sc. math., Paris 1969. (1969) MR0250950
  5. Bigard A., Conrad P. F., Wolfenstein S., 10.1007/BF01110258, Math. Z. (1968), 201-211. (1968) MR0236083DOI10.1007/BF01110258
  6. Bigard A., Keimel K., Wolfenstein S., Groupes et Anneaux Réticulés, Springer. Berlin-Heidelberg-New York 1977. (1977) Zbl0384.06022MR0552653
  7. Bosbach B., 10.4064/fm-64-3-257-287, Fund. Math. LXIV (1969), 257-287. (1969) Zbl0183.30603MR0260902DOI10.4064/fm-64-3-257-287
  8. Bosbach B., Schwache Teilbarkeitshalbgruppen, Semig. For. 12 (1976), 119-135. (1976) Zbl0366.06025MR0401946
  9. Bosbach B., Zur Theorie der stetigen Teilbarkeitshalbgruppen, Semig. For. 20 (1980), 299-317. (1980) Zbl0468.06006MR0583113
  10. Bosbach B., Archimedische Teilbarkeitshalbgruppen und Quaderalgebren, Semig. For. 20 (1980), 319-334. (1980) Zbl0468.06007MR0583114
  11. Bosbach B., Zur Theorie der vollständigen Teilbarkeitshalbgruppen, Semig. For. 25 (1982), 111-124. (1982) Zbl0495.06008MR0663172
  12. Bosbach B., Lattice ordered binary systems, Act. Sc. Math. (to appear). Zbl0667.06008MR0980278
  13. Clifford A. H., 10.2307/2372706, Amer. J. Math. 76 (1954), 631-646. (1954) MR0062118DOI10.2307/2372706
  14. Conrad P. F., Epi-archimedean groups, Czech. Math. J. 24 (1974), 1-27. (1974) Zbl0319.06009MR0347701
  15. Hölder O., Die Axiome der Quantität und die Lehre vom Maß, Ber. Verh. Sächs. Ges. Wiss. Leipzig, Math.-Phys. Cl. 53 (1901), 1-64. (1901) 
  16. Luxemburg W., Moore L., 10.1215/S0012-7094-67-03475-8, Duke Math. J. 34 (1967), 725-739. (1967) Zbl0171.10501MR0217562DOI10.1215/S0012-7094-67-03475-8
  17. Pedersen F., Contribution to the theory of regular subgroups and prime subgroups of lattice-ordered groups, Dissertation, Tulane University 1967. (1967) 
  18. Wolfenstein S., 10.1016/0021-8693(76)90037-5, J. Alg. 42 (1976), 199-207. (1976) MR0417016DOI10.1016/0021-8693(76)90037-5
  19. Zannen A., MR 651, Math. Reviews 36 (1968), 142-143. (1968) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.