Lattices of orthogonal theories

Jan Trlifaj

Czechoslovak Mathematical Journal (1989)

  • Volume: 39, Issue: 4, page 595-603
  • ISSN: 0011-4642

How to cite

top

Trlifaj, Jan. "Lattices of orthogonal theories." Czechoslovak Mathematical Journal 39.4 (1989): 595-603. <http://eudml.org/doc/13806>.

@article{Trlifaj1989,
author = {Trlifaj, Jan},
journal = {Czechoslovak Mathematical Journal},
keywords = {lattices of orthogonal theories; bifunctors; torsion theories; cotorsion theories; von Neumann regular rings},
language = {eng},
number = {4},
pages = {595-603},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lattices of orthogonal theories},
url = {http://eudml.org/doc/13806},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Trlifaj, Jan
TI - Lattices of orthogonal theories
JO - Czechoslovak Mathematical Journal
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 39
IS - 4
SP - 595
EP - 603
LA - eng
KW - lattices of orthogonal theories; bifunctors; torsion theories; cotorsion theories; von Neumann regular rings
UR - http://eudml.org/doc/13806
ER -

References

top
  1. F. W. Anderson, K. R. Fuller, Rings and categories of modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974. (1974) Zbl0301.16001MR0417223
  2. L. Bican T. Kepka, P. Němec, Rings, modules, and preradicals, M. Dekker Inc., New York-Basel, 1982. (1982) Zbl0483.16026MR0655412
  3. H. Cartan, S. Eilenberg, Homological algebra, Princeton University Press, Princeton, 1956. (1956) Zbl0075.24305MR0077480
  4. S. E. Dickson, 10.1090/S0002-9947-1966-0191935-0, Trans. Amer. Math. Soc. 121 (1966), 223-235. (1966) Zbl0138.01801MR0191935DOI10.1090/S0002-9947-1966-0191935-0
  5. P. C. Eklof, 10.1090/S0002-9947-1977-0453520-X, Trans. Amer. Math. Soc. 227 (1977), 207-225. (1977) Zbl0355.02047MR0453520DOI10.1090/S0002-9947-1977-0453520-X
  6. P. C. Eklof, Set theoretic methods in homological algebra and abelian groups, Montreal University Press, Montreal, 1980. (1980) Zbl0488.03029MR0565449
  7. L. Fuchs, Infinite abelian groups, Vol. 1, Academic Press, New York-London, 1970. (1970) Zbl0209.05503MR0255673
  8. B. J. Gardner, 10.1017/S0004972700046700, Bull. Austral. Math. Soc. 4 (1971), 355-359. (1971) Zbl0209.07304MR0280547DOI10.1017/S0004972700046700
  9. K. R. Goodearl, Von Neumann regular rings, Pitman, London-San Francisco-Melbourne, 1979. (1979) Zbl0411.16007MR0533669
  10. G. Herden, M. Dugas, 10.1080/00927878308822914, Com. in Algebra 11 (15) (1983), 1455-1472. (1983) Zbl0543.20038MR0700574DOI10.1080/00927878308822914
  11. P. Jambor, An orthogonal theory of a set-valued bifunctor, Czech. Math. J. 23 (1973), 447-454. (1973) Zbl0271.18010MR0338123
  12. P. Jambor, Hereditary tensor-orthogonal theories, Comment. Math. Univ. Carolinae 16 (1975), 139-145. (1975) Zbl0303.16011MR0399149
  13. A. I. Kašu, Radicals and torsions in modules, Štiinca, Kišiněv 1983 (Russian). (1983) Zbl0312.16007
  14. L. Salce, Cotorsion theories for abelian groups, Symposia Math. XXIII (1979), 11-32. (1979) Zbl0426.20044MR0565595
  15. J. Trlifaj, T. Kepka, Structure of T-rings, Colloq. Math. Soc. Bolyai 38 (Radical Theory), North-Holland, Amsterdam-Oxford-New York, (1985), 633-655. (1985) Zbl0588.16021MR0899130
  16. J. Trlifaj, Ext and von Neumann regular rings, Czech. Math. J. 35 (1985), 324-332. (1985) Zbl0577.16007MR0787134
  17. J. Trlifaj, Whitehead property of modules, Czech. Math. J. 36 (1986), 467-475. (1986) Zbl0616.16009MR0847773
  18. J. Trlifaj, On countable von Neumann regular rings, (to appear). Zbl0790.16011MR1087617
  19. W. Hodges, 10.1007/BF02483879, Algebra Universalis 12 (1981), 205-220. (1981) Zbl0476.03039MR0608664DOI10.1007/BF02483879

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.