Invariant regions associated with quasilinear damped wave equations
Czechoslovak Mathematical Journal (1990)
- Volume: 40, Issue: 4, page 612-618
- ISSN: 0011-4642
Access Full Article
topHow to cite
topFeireisl, Eduard. "Invariant regions associated with quasilinear damped wave equations." Czechoslovak Mathematical Journal 40.4 (1990): 612-618. <http://eudml.org/doc/13883>.
@article{Feireisl1990,
author = {Feireisl, Eduard},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dirichlet boundary conditions; method of vanishing viscosity; parabolic regularization; nonhomogeneous weakly damped wave equation},
language = {eng},
number = {4},
pages = {612-618},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Invariant regions associated with quasilinear damped wave equations},
url = {http://eudml.org/doc/13883},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Feireisl, Eduard
TI - Invariant regions associated with quasilinear damped wave equations
JO - Czechoslovak Mathematical Journal
PY - 1990
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 40
IS - 4
SP - 612
EP - 618
LA - eng
KW - Dirichlet boundary conditions; method of vanishing viscosity; parabolic regularization; nonhomogeneous weakly damped wave equation
UR - http://eudml.org/doc/13883
ER -
References
top- Chueh K. N., Conley C. C., Smoller J. A., 10.1512/iumj.1977.26.26029, Indiana Univ. Math. J. 26, 373-392 (1977). (1977) Zbl0368.35040MR0430536DOI10.1512/iumj.1977.26.26029
- Dafermos C. M., 10.1137/0518031, SIAM J. Math. Anal. 18, 409-421 (1987). (1987) Zbl0655.35055MR0876280DOI10.1137/0518031
- DiPerna R. J., 10.1007/BF00251724, Arch. Rational. Mech. Anal. 82, 27-70 (1983). (1983) Zbl0519.35054MR0684413DOI10.1007/BF00251724
- Feireisl E., Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations, Apl.Mat.55(3), 192-208(1990). (1990) Zbl0737.35040MR1052740
- Feireisl E., Weakly damped quasilinear wave equation: Existence of time-periodic solutions, to appear in Nonlinear Anal. T.M.A. Zbl0757.35044MR1131015
- Rascle M., Un résultat de „compacité par compensation à coefficients variables, Application à l'élasticité non linéaire. C. R. Acad. Sc. Paris 302 Sér. I 8, 311-314 (1986). (1986) Zbl0606.35054MR0838582
- Serre D., La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace, J. Math. Pures et Appl. 65, 423-468 (1986). (1986) MR0881690
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.