Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations
Aplikace matematiky (1990)
- Volume: 35, Issue: 3, page 192-208
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFeireisl, Eduard. "Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations." Aplikace matematiky 35.3 (1990): 192-208. <http://eudml.org/doc/15624>.
@article{Feireisl1990,
abstract = {In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation $U_\{tt\}+dU_t-\sigma (x,t,U_x)_x+aU=f(x,t,U_x,U_t,U)$ with the Dirichlet boundary conditions is proved. No “smallness” assumptions are made concerning the function $f$. The main idea of the proof relies on the compensated compactness theory.},
author = {Feireisl, Eduard},
journal = {Aplikace matematiky},
keywords = {telegraph equation; compensated compactness; vanishing viscosity method; nonlinear telegraph equation; compensated compactness theory; vanishing viscosity method},
language = {eng},
number = {3},
pages = {192-208},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations},
url = {http://eudml.org/doc/15624},
volume = {35},
year = {1990},
}
TY - JOUR
AU - Feireisl, Eduard
TI - Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations
JO - Aplikace matematiky
PY - 1990
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 35
IS - 3
SP - 192
EP - 208
AB - In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation $U_{tt}+dU_t-\sigma (x,t,U_x)_x+aU=f(x,t,U_x,U_t,U)$ with the Dirichlet boundary conditions is proved. No “smallness” assumptions are made concerning the function $f$. The main idea of the proof relies on the compensated compactness theory.
LA - eng
KW - telegraph equation; compensated compactness; vanishing viscosity method; nonlinear telegraph equation; compensated compactness theory; vanishing viscosity method
UR - http://eudml.org/doc/15624
ER -
References
top- H. Amann, 10.1016/0022-247X(78)90192-0, J. Math. Anal. Appl. 65 (1978), 432-467. (1978) Zbl0387.35038MR0506318DOI10.1016/0022-247X(78)90192-0
- H. Amann, Periodic solutions of semi-linear parabolic equations, Nonlinear Analysis: A collection of papers in honor of Erich Rothe, Academic Press, New York (1978), 1 - 29. (1978) MR0499089
- K. N. Chueh C. C. Conley J. A. Smoller, 10.1512/iumj.1977.26.26029, Indiana Univ. Math. J. 26 (1977), 373 - 392. (1977) MR0430536DOI10.1512/iumj.1977.26.26029
- W. Craig, A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations, Ann. Sci. Norm Sup. Pisa Ser. IV- Vol. 10 (1983), 125-167. (1983) Zbl0518.35057MR0713113
- R. J. DiPerna, 10.1090/S0002-9947-1985-0808729-4, Trans. Amer. Math. Soc. 292 (2) (1985), 383 - 420. (1985) MR0808729DOI10.1090/S0002-9947-1985-0808729-4
- R. J. DiPerna, 10.1007/BF00251724, Arch. Rational. Mech. Anal. 82 (1983) 27-70. (1983) Zbl0519.35054MR0684413DOI10.1007/BF00251724
- E. Feireisl, Time-dependent invariant regions for parabolic systems related to one-dimensional nonlinear elasticity, Apl. mat. 35 (1990), 184-191. (1990) Zbl0709.73013MR1052739
- D. Henry, 10.1007/BFb0089647, Lecture Notes in Math. 840, Springer-Verlag (1981). (1981) Zbl0456.35001MR0610244DOI10.1007/BFb0089647
- P. Krejčí, Hard implicit function theorem and small periodic solutions to partial differential equations, Comment. Math. Univ. Carolinae 25 (1984), 519-536. (1984) MR0775567
- A. Matsumura, 10.2977/prims/1195189813, Publ. RIMS Kyoto Univ. 13, (1977), 349-379. (1977) Zbl0371.35030MR0470507DOI10.2977/prims/1195189813
- A. Milani, Global existence for quasi-linear dissipative wave equations with large data and small parameter, Math. Z. 198 (1988), 291 - 297. (198) MR0939542
- A. Milani, 10.1007/BF01776855, Ann. Mat. Рurа Appl. 140 (4) (1985), 331-344. (1985) MR0807643DOI10.1007/BF01776855
- T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics, Publications Mathématiques D'Orsay 78.02, Univ. Paris Sud (1978). (1978) Zbl0392.76065MR0481578
- H. Petzeltová, Applications of Moser's method to a certain type of evolution equations, Czechoslovak Math. J. 33 (1983), 427-434. (1983) MR0718925
- H. Petzeltová M. Štědrý, Time periodic solutions of telegraph equations in n spatial variables, Časopis Pěst. Mat. 109 (1984), 60-73. (1984) MR0741209
- P. H. Rabinowitz, 10.1002/cpa.3160220103, Comm. Pure Appl. Math. 22 (1969), 15-39. (1969) Zbl0157.17301MR0236504DOI10.1002/cpa.3160220103
- M. Rascle, Un résultat de "compacité par compensation à coefficients variables". Application à l'elasticitě non linéaire, C. R. Acad. Sci. Paris 302 Sér. I 8 (1986), 311 - 314. (1986) Zbl0606.35054MR0838582
- D. Serre, La compacité par compensation pour lour les systemes hyperboliques non linéaires de deux équations a une dimension d'espace, J. Math. Pures et Appl. 65 (1986), 423 - 468. (1986) MR0881690
- M. Slemrod, Damped conservation laws in continuum mechanics, Nonlinear Analysis and Mechanics Vol. III, Pitman New York (1978), 135-173. (1978) MR0539691
- M. Štědrý, Small time-periodic solutions to fully nonlinear telegraph equations in more spatial dimensions, (to appear). MR0995505
- L. Tartar, Compensated compactness and applications to partial differential equations, Research Notes in Math. 39, Pitman Press (1975), 136-211. (1975) MR0584398
- O. Vejvoda, al., Partial differential equations: Time periodic solutions, Martinus Nijhoff Publ. (1982). (1982) Zbl0501.35001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.