Losik cohomology of the Lie algebra of infinitesimal automorphisms of a G -structure. II

Vojtěch Bartík; Jiří Vanžura

Czechoslovak Mathematical Journal (1990)

  • Volume: 40, Issue: 4, page 625-647
  • ISSN: 0011-4642

How to cite

top

Bartík, Vojtěch, and Vanžura, Jiří. "Losik cohomology of the Lie algebra of infinitesimal automorphisms of a $G$-structure. II." Czechoslovak Mathematical Journal 40.4 (1990): 625-647. <http://eudml.org/doc/13885>.

@article{Bartík1990,
author = {Bartík, Vojtěch, Vanžura, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {infinitesimally homogeneous -structure; Lie algebra of the infinitesimal automorphisms},
language = {eng},
number = {4},
pages = {625-647},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Losik cohomology of the Lie algebra of infinitesimal automorphisms of a $G$-structure. II},
url = {http://eudml.org/doc/13885},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Bartík, Vojtěch
AU - Vanžura, Jiří
TI - Losik cohomology of the Lie algebra of infinitesimal automorphisms of a $G$-structure. II
JO - Czechoslovak Mathematical Journal
PY - 1990
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 40
IS - 4
SP - 625
EP - 647
LA - eng
KW - infinitesimally homogeneous -structure; Lie algebra of the infinitesimal automorphisms
UR - http://eudml.org/doc/13885
ER -

References

top
  1. Albert C., Molino P., Pseudogroupes de Lie et structures différentiables, 1.1. (Mimeographed). 
  2. Bartík V., Vanzura J., Losik cohomology of the Lie algebra of infinitesimal automorphisms of a G-structure, Czechoslovak Math. J. 35 (1985), 78-105. (1985) Zbl0582.57018MR0779338
  3. Bourbaki N., Éléments de Mathématique, Algèbre, Chapitre 8: Modules et anneaux semisimples, Hermann, Paris, 1958. (1958) Zbl0102.27203MR0098114
  4. Bourbaki N., Éléments de Mathématique, Groupes et algèbres de Lie, Chapitre 1: Algèbres de Lie, Hermann, Paris, 1960. (1960) Zbl0199.35203MR0453824
  5. Bourbaki N., Éléments de mathématique, Groupes et algèbres de Lie, Chapitre 7: Sousalgèbres de Cartan, éléments réguliers, Chapitre 8: Algèbres de Lie semi-simples déployées, Herman, Paris, 1975. (1975) Zbl0329.17002MR0453824
  6. Bredon G., Sheaf Theory, McGraw-Hill, New York, 1967. (1967) Zbl0158.20505MR0221500
  7. Cartan H., Eilenberg S., Homological Algebra, Princeton University Press, Princeton, 1956. (1956) Zbl0075.24305MR0077480
  8. Chevalley C., Eilenberg S., 10.1090/S0002-9947-1948-0024908-8, Trans. Amer. Math. Soc. 63 (1948), 85-124. (1948) Zbl0031.24803MR0024908DOI10.1090/S0002-9947-1948-0024908-8
  9. Greub W., Halperin S., Vanstone R., Connections, Curvature and Cohomology, vol. II, Academic Press, New York-London, 1973. (1973) Zbl0335.57001
  10. Greub W., Halperin S., Vanstone R., Connections, Curvature and Cohomology, vol. III, Academic Press, New York-London, 1973. (1973) Zbl0335.57001
  11. Hochschild F., Serre J.-P., 10.2307/1969740, Annals of Math. 57 (1953), 591-603. (1953) Zbl0053.01402MR0054581DOI10.2307/1969740
  12. Kobayashi S., Transformation groups in differential geometry, Springer-Verlag, 1972. (1972) Zbl0246.53031MR0355886
  13. Kobayashi S., Nomizu K., Foundations of Differential Geometry, vol. I, Interscience Publishers, New York-London, 1963. (1963) Zbl0119.37502MR0152974
  14. Losik M. V., On the cohomologies of infinite-dimensional Lie algebras of vector fields, Funkc. Analiz. i Ego Pril. 4 (2) (1970), 43-53. (Russian). (1970) Zbl0212.28002MR0279823
  15. Reinhart B. L., Differential Geometry of Foliations, Springer-Verlag, Berlin-Heidelberg- NewYork-Tokyo, 1983. (1983) Zbl0506.53018MR0705126
  16. Spanier E. H., Algebraic Topology, McGraw-Hill, New York-Toronto-London, 1966. (1966) Zbl0145.43303MR0210112

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.