Congruence properties of distributive double p -algebras

Michael E. Adams; Rodney Beazer

Czechoslovak Mathematical Journal (1991)

  • Volume: 41, Issue: 2, page 216-231
  • ISSN: 0011-4642

How to cite

top

Adams, Michael E., and Beazer, Rodney. "Congruence properties of distributive double $p$-algebras." Czechoslovak Mathematical Journal 41.2 (1991): 216-231. <http://eudml.org/doc/13919>.

@article{Adams1991,
author = {Adams, Michael E., Beazer, Rodney},
journal = {Czechoslovak Mathematical Journal},
keywords = {congruence lattice; distributive double -algebra; congruence permutable; relatively complemented; prime ideals; principal join property; principal congruences},
language = {eng},
number = {2},
pages = {216-231},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Congruence properties of distributive double $p$-algebras},
url = {http://eudml.org/doc/13919},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Adams, Michael E.
AU - Beazer, Rodney
TI - Congruence properties of distributive double $p$-algebras
JO - Czechoslovak Mathematical Journal
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 41
IS - 2
SP - 216
EP - 231
LA - eng
KW - congruence lattice; distributive double -algebra; congruence permutable; relatively complemented; prime ideals; principal join property; principal congruences
UR - http://eudml.org/doc/13919
ER -

References

top
  1. R. Beazer, 10.1007/BF02485824, Algebra Universalis 6 (1976), 121-129. (1976) Zbl0353.06002MR0419319DOI10.1007/BF02485824
  2. R. Beazer, 10.1017/S1446788700011654, J. Australian Math. Soc. 26 (1978), 163-168. (1978) Zbl0389.06004MR0551487DOI10.1017/S1446788700011654
  3. R. Beazer, Congruence pairs of distributive doubles-algebras with non-empty core, Houston J. Math. 6 (1980), 443-454. (1980) MR0621741
  4. R. Beazer, Congruence uniform algebras with pseudocomplementation, Studia Sci. Math. Hungar. 20 (1985), 43-48 (1985) Zbl0523.06016MR0886003
  5. S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, Springer-Verlag, 1981. (1981) Zbl0478.08001MR0648287
  6. I. Chajda, 10.1007/BF01201102, Algebra Universalis 19 (1984), 337-340. (1984) Zbl0552.08006MR0779151DOI10.1007/BF01201102
  7. G. Grätzer, General Lattice Theory, Birkhäuser Verlag, Basel and Stuttgart, 1978. (1978) Zbl0436.06001MR0504338
  8. T. Hecht, T. Katriňák, Principal congruences of p -algebras and double p -algebras, Proc. Amer. Math. Soc. 58 (1976), 25-31. (1976) Zbl0352.06006MR0409293
  9. T. Katriňák, 10.1007/BF02945123, Algebra Universalis 3 (1973), 238-246. (1973) Zbl0276.08005MR0332598DOI10.1007/BF02945123
  10. T. Katriňák, 10.1007/BF02485737, Algebra Universalis 4 (1974), 273-276. (1974) Zbl0316.06007MR0354475DOI10.1007/BF02485737
  11. T. Katriňák, 10.1007/BF02485390, Algebra Universalis 8 (1978), 205-220. (1978) Zbl0381.06017MR0465973DOI10.1007/BF02485390
  12. T. Katriňák, 10.1007/BF02482902, Algebra Universalis 10 (1980), 195-219. (1980) MR0560141DOI10.1007/BF02482902
  13. V. Koubek, J. Sichler, 10.1017/S0017089500005887, Glasgow Math. J. 26 (1985), 121-133. (1985) Zbl0574.06009MR0798738DOI10.1017/S0017089500005887
  14. R. W. Quackenbush, 10.1007/BF02483933, Algebra Universalis 14 (1982), 292-296. (1982) Zbl0493.08006MR0654398DOI10.1007/BF02483933
  15. J. C. Varlet, A regular variety of type <2,2, 1, 1,0,0>, Algebra Universalis 2(1972), 218-223. (1972) Zbl0256.06004MR0325477
  16. J. C. Varlet, 10.1007/BF02488028, Algebra Universalis 9 (1979), 165-178. (1979) Zbl0436.06009MR0523931DOI10.1007/BF02488028
  17. J. C. Varlet, 10.1007/BF01182250, Algebra Universalis 18 (1984), 95-105. (1984) Zbl0547.06008MR0743459DOI10.1007/BF01182250

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.