# On the Scott topology on the set $C(Y,Z)$ of continuous maps

Czechoslovak Mathematical Journal (1991)

- Volume: 41, Issue: 3, page 373-377
- ISSN: 0011-4642

## Access Full Article

top## How to cite

topPapadopoulos, Basil K.. "On the Scott topology on the set $C(Y,Z)$ of continuous maps." Czechoslovak Mathematical Journal 41.3 (1991): 373-377. <http://eudml.org/doc/13935>.

@article{Papadopoulos1991,

author = {Papadopoulos, Basil K.},

journal = {Czechoslovak Mathematical Journal},

keywords = {topology of pointwise convergence; specialization order; pointwise order; jointly continuous topology; Scott topology},

language = {eng},

number = {3},

pages = {373-377},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {On the Scott topology on the set $C(Y,Z)$ of continuous maps},

url = {http://eudml.org/doc/13935},

volume = {41},

year = {1991},

}

TY - JOUR

AU - Papadopoulos, Basil K.

TI - On the Scott topology on the set $C(Y,Z)$ of continuous maps

JO - Czechoslovak Mathematical Journal

PY - 1991

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 41

IS - 3

SP - 373

EP - 377

LA - eng

KW - topology of pointwise convergence; specialization order; pointwise order; jointly continuous topology; Scott topology

UR - http://eudml.org/doc/13935

ER -

## References

top- Day B., Kelly G. M., 10.1017/S0305004100045850, Proc. Camb. Phil. Soc. 67, 553-558 (1970). (1970) Zbl0191.20801MR0254817DOI10.1017/S0305004100045850
- Gierz G., Hofmann K. H., Keimel K., Lawson J. D., Mislove M., Scott D. S., A Compendium of Continuous Lattices, Springer, Berlin-Heidelberg-New York (1980). (1980) Zbl0452.06001MR0614752
- Hofmann K. H., Lawson J. D., 10.1090/S0002-9947-1978-0515540-7, Trans. Amer. Math. Soc. 246, 285-310 (1978). (1978) Zbl0402.54043MR0515540DOI10.1090/S0002-9947-1978-0515540-7
- Lambrinos P. Th., 10.1007/BF01174812, Manuscr. Math. 36, 47-66 (1981). (1981) Zbl0459.54011MR0637854DOI10.1007/BF01174812
- Lambrinos P. Th., Papadopoulos B., The (strong) Isbell topology and (weakly) continuous lattices, Continuous Lattices and Applications. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York. vol. 101, 191-211, (1985). (1985) Zbl0587.54027MR0826002
- Schwarz F., 10.1007/BF01174872, Manuscr. Math. 49, 79-89 (1984). (1984) Zbl0566.54006MR0762788DOI10.1007/BF01174872
- Schwarz F., Weck S., Scott topology, Isbell topology and continuous convergence, Continuous Lattices and Applications. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York. vol. 101, 251-271, (1985). (1985) Zbl0598.54005MR0826006
- Wyler O., Convenient categories for topology, Gen. Top. Appl. 3, 225-242 (1983). (1983) Zbl0264.54018MR0324622

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.