On the Scott topology on the set C ( Y , Z ) of continuous maps

Basil K. Papadopoulos

Czechoslovak Mathematical Journal (1991)

  • Volume: 41, Issue: 3, page 373-377
  • ISSN: 0011-4642

How to cite

top

Papadopoulos, Basil K.. "On the Scott topology on the set $C(Y,Z)$ of continuous maps." Czechoslovak Mathematical Journal 41.3 (1991): 373-377. <http://eudml.org/doc/13935>.

@article{Papadopoulos1991,
author = {Papadopoulos, Basil K.},
journal = {Czechoslovak Mathematical Journal},
keywords = {topology of pointwise convergence; specialization order; pointwise order; jointly continuous topology; Scott topology},
language = {eng},
number = {3},
pages = {373-377},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Scott topology on the set $C(Y,Z)$ of continuous maps},
url = {http://eudml.org/doc/13935},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Papadopoulos, Basil K.
TI - On the Scott topology on the set $C(Y,Z)$ of continuous maps
JO - Czechoslovak Mathematical Journal
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 41
IS - 3
SP - 373
EP - 377
LA - eng
KW - topology of pointwise convergence; specialization order; pointwise order; jointly continuous topology; Scott topology
UR - http://eudml.org/doc/13935
ER -

References

top
  1. Day B., Kelly G. M., 10.1017/S0305004100045850, Proc. Camb. Phil. Soc. 67, 553-558 (1970). (1970) Zbl0191.20801MR0254817DOI10.1017/S0305004100045850
  2. Gierz G., Hofmann K. H., Keimel K., Lawson J. D., Mislove M., Scott D. S., A Compendium of Continuous Lattices, Springer, Berlin-Heidelberg-New York (1980). (1980) Zbl0452.06001MR0614752
  3. Hofmann K. H., Lawson J. D., 10.1090/S0002-9947-1978-0515540-7, Trans. Amer. Math. Soc. 246, 285-310 (1978). (1978) Zbl0402.54043MR0515540DOI10.1090/S0002-9947-1978-0515540-7
  4. Lambrinos P. Th., 10.1007/BF01174812, Manuscr. Math. 36, 47-66 (1981). (1981) Zbl0459.54011MR0637854DOI10.1007/BF01174812
  5. Lambrinos P. Th., Papadopoulos B., The (strong) Isbell topology and (weakly) continuous lattices, Continuous Lattices and Applications. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York. vol. 101, 191-211, (1985). (1985) Zbl0587.54027MR0826002
  6. Schwarz F., 10.1007/BF01174872, Manuscr. Math. 49, 79-89 (1984). (1984) Zbl0566.54006MR0762788DOI10.1007/BF01174872
  7. Schwarz F., Weck S., Scott topology, Isbell topology and continuous convergence, Continuous Lattices and Applications. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York. vol. 101, 251-271, (1985). (1985) Zbl0598.54005MR0826006
  8. Wyler O., Convenient categories for topology, Gen. Top. Appl. 3, 225-242 (1983). (1983) Zbl0264.54018MR0324622

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.