Inhomogeneous boundary value problems for the von Kármán equations. II
Ivan Hlaváček; Joachim Naumann
Aplikace matematiky (1975)
- Volume: 20, Issue: 4, page 280-297
- ISSN: 0862-7940
Access Full Article
topHow to cite
topHlaváček, Ivan, and Naumann, Joachim. "Inhomogeneous boundary value problems for the von Kármán equations. II." Aplikace matematiky 20.4 (1975): 280-297. <http://eudml.org/doc/14918>.
@article{Hlaváček1975,
author = {Hlaváček, Ivan, Naumann, Joachim},
journal = {Aplikace matematiky},
language = {eng},
number = {4},
pages = {280-297},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inhomogeneous boundary value problems for the von Kármán equations. II},
url = {http://eudml.org/doc/14918},
volume = {20},
year = {1975},
}
TY - JOUR
AU - Hlaváček, Ivan
AU - Naumann, Joachim
TI - Inhomogeneous boundary value problems for the von Kármán equations. II
JO - Aplikace matematiky
PY - 1975
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 20
IS - 4
SP - 280
EP - 297
LA - eng
UR - http://eudml.org/doc/14918
ER -
References
top- Hlaváček I., Naumann J., Inhomogeneous boundary value problems for the von Kármán equations. I, Aplikace matematiky 19 (1974), 253-269. (1974) MR0377307
- Hlaváček I., Nečas J., 10.1007/BF00249518, Arch. Ratl. Mech. Anal., 36 (1970), 305-311. (1970) Zbl0193.39001MR0252844DOI10.1007/BF00249518
- Lions J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris 1969. (1969) Zbl0189.40603MR0259693
- Naumann J., An existence theorem for the von Kármán equations under the conditions of free boundary, Apl. mat., 19 (1974), 17-27. (1974) MR0346294
Citations in EuDML Documents
top- Karel Rektorys, Jana Danešová, Jiří Matyska, Čestmír Vitner, Solution of the first problem of plane elasticity for multiply connected regions by the method of least squares on the boundary. II
- Július Cibula, Equations de von Kármán. I. Résultat d'existence pour les problèmes aux limites non homogènes.
- Hans-Ullrich Wenk, On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.