Evolutionary variational inequalities and applications in plasticity

Jindřich Nečas; Luděk Trávníček

Aplikace matematiky (1980)

  • Volume: 25, Issue: 4, page 241-256
  • ISSN: 0862-7940

Abstract

top
An abstract theory of evolutionary variational inequalities and its applications to the traction boundary value problems of elastoplasticity are studied, using the penalty method to prove the existence of a solution.

How to cite

top

Nečas, Jindřich, and Trávníček, Luděk. "Evolutionary variational inequalities and applications in plasticity." Aplikace matematiky 25.4 (1980): 241-256. <http://eudml.org/doc/15148>.

@article{Nečas1980,
abstract = {An abstract theory of evolutionary variational inequalities and its applications to the traction boundary value problems of elastoplasticity are studied, using the penalty method to prove the existence of a solution.},
author = {Nečas, Jindřich, Trávníček, Luděk},
journal = {Aplikace matematiky},
keywords = {evolutionary variational inequalities; flow theory of plasticity; penalty method; evolutionary variational inequalities; flow theory of plasticity; penalty method},
language = {eng},
number = {4},
pages = {241-256},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Evolutionary variational inequalities and applications in plasticity},
url = {http://eudml.org/doc/15148},
volume = {25},
year = {1980},
}

TY - JOUR
AU - Nečas, Jindřich
AU - Trávníček, Luděk
TI - Evolutionary variational inequalities and applications in plasticity
JO - Aplikace matematiky
PY - 1980
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 25
IS - 4
SP - 241
EP - 256
AB - An abstract theory of evolutionary variational inequalities and its applications to the traction boundary value problems of elastoplasticity are studied, using the penalty method to prove the existence of a solution.
LA - eng
KW - evolutionary variational inequalities; flow theory of plasticity; penalty method; evolutionary variational inequalities; flow theory of plasticity; penalty method
UR - http://eudml.org/doc/15148
ER -

References

top
  1. G. Duvaut J. L. Lions, Les inéquations en méchanique et en physique, Dunod, Paris 1972. (1972) MR0464857
  2. Q S. Nguyen, Materiaux élastoplastiques écrouissables, Arch. of Mech. 25, 1973, p. 695. (1973) 
  3. K. Gröger, Quasi-static and dynamic behaviour of elastic-plastic materials, To appear. 
  4. J. Kratochvíl J. Nečas, On the solution of the traction boundary-value problem for elastic-inelastic materials, CMUC 14 (4), 1973, 755-760. (1973) MR0337100
  5. I. Hlaváček J. Nečas, 10.1007/BF00249518, Part I, II. Archive for Rat. Mech. and Anal., Vol. 36, No. 4, 1970, 305-334. (1970) MR0252844DOI10.1007/BF00249518
  6. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Praha 1967. (1967) MR0227584
  7. S. Fučík J. Nečas V. Souček, Introduction to variational calculus, (Czech.) Lecture Notes of Prague University, 1972. (1972) 
  8. K. Washizu, Variational methods in elasticity and plasticity, Pergamon Press, 1968. (1968) Zbl0164.26001MR0391679
  9. J. Nečas, On the formulation of the traction problem for the flow theory of plasticity, Apl. mat. 18 (2), 1973, 119-127. (1973) MR0314342
  10. I. Hlaváček J. Nečas, Introduction to the mathematical theory of elastic and elastic-plastic bodies, (Czech.), Praha (to appear). 
  11. N. Bourbaki, Integration, Paris 1965. (1965) Zbl0136.03404

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.