Analysis of a two-unit standby redundant system with three states of units
Aplikace matematiky (1982)
- Volume: 27, Issue: 3, page 192-208
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLešanovský, Antonín. "Analysis of a two-unit standby redundant system with three states of units." Aplikace matematiky 27.3 (1982): 192-208. <http://eudml.org/doc/15239>.
@article{Lešanovský1982,
abstract = {A cold-standby redundant system with two identical units and one repair facility is considered. Units can be in three states> good (I), degraded (II), and failed (III). We suppose that only the following state-transitions of a unit are possible: $I\rightarrow II, II\rightarrow III, II\rightarrow I, III\rightarrow I$. The repair of a unit of the type $II \rightarrow I$ can be interpreted as a preventive maintenance. Its realization depends on the states of both units. Several characteristics of the system (probabilities, distribution functions or their Laplace-Stieltjes transforms and mathematical expectations) are derived, e.g. time to system failure, time of non-operating period of the system and stationary-state probabilities of the couple of units of the system.},
author = {Lešanovský, Antonín},
journal = {Aplikace matematiky},
keywords = {cold-standby redundant system; time to system failure; stationarystate probabilities; cold-standby redundant system; time to system failure; stationarystate probabilities},
language = {eng},
number = {3},
pages = {192-208},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Analysis of a two-unit standby redundant system with three states of units},
url = {http://eudml.org/doc/15239},
volume = {27},
year = {1982},
}
TY - JOUR
AU - Lešanovský, Antonín
TI - Analysis of a two-unit standby redundant system with three states of units
JO - Aplikace matematiky
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 27
IS - 3
SP - 192
EP - 208
AB - A cold-standby redundant system with two identical units and one repair facility is considered. Units can be in three states> good (I), degraded (II), and failed (III). We suppose that only the following state-transitions of a unit are possible: $I\rightarrow II, II\rightarrow III, II\rightarrow I, III\rightarrow I$. The repair of a unit of the type $II \rightarrow I$ can be interpreted as a preventive maintenance. Its realization depends on the states of both units. Several characteristics of the system (probabilities, distribution functions or their Laplace-Stieltjes transforms and mathematical expectations) are derived, e.g. time to system failure, time of non-operating period of the system and stationary-state probabilities of the couple of units of the system.
LA - eng
KW - cold-standby redundant system; time to system failure; stationarystate probabilities; cold-standby redundant system; time to system failure; stationarystate probabilities
UR - http://eudml.org/doc/15239
ER -
References
top- K. Arndt P. Franken, Construction of a class of stationary processes with applications in reliability, Zastosowania matematyki 16 (1979), 3, 319-393. (1979) MR0534130
- R. E. Barlow F. Proschan, Mathematical theory of reliability, J. Wiley, New York-London -Sydney (1965). (1965) MR0195566
- B. V. Gnedenko, Ju. K. Beljajev A. D. Solovjev, Математические методы в теории надежности, Nauka, Moskva (1965). (1965) MR0217823
- В. V. Gnedenko M. Dinič, Ju. Nasr, O надежности дублированной системы с восстановлением и профилактическим обслуживанием, Izv. AN SSSR, Techn. Kibernet. (1975), 1, 66-11. (1975)
- B. Kopociński, Outline of renewal and reliability theory, (Polish). Państwowe wydawnictwo naukowe, Warszawa (1973). (1973) MR0423567
- V. S. Koroljuk A. F. Turbin, Полумарковские процессы и их приложения, Naukova dumka, Kijev (1976). (1976) MR0420902
- T. Nakagawa S. Osaki, Stochastic behaviour of a two-unit standby redundant system, INFOR Canad. J. Oper. Res. and Infor. Proc. 12 (1974), 1, 66-10. (1974) MR0433630
- S. Osaki, On a two-unit standby redundant system with imperfect swichover, IEEE Trans. Reliab. R-21 (1972), 1, 20-24. (1972)
- S. Osaki T. Nakagawa, Bibliography for reliability and availability of stochastic systems, IEEE Trans. Reliab. R-25 (1976), 4, 284-286. (1976) MR0403609
- P. R. Parthasarathy, Cost analysis for 2-unit systems, IEEE Trans. Reliab. R-28 (1979), 3, 268-269. (1979) Zbl0411.62074
- D. Szász, 10.1214/aop/1176995760, Ann. Prob. 5 (1977), 4, 550-559. (1977) MR0461701DOI10.1214/aop/1176995760
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.