Some properties and applications of probability distributions based on MacDonald function
Aplikace matematiky (1982)
- Volume: 27, Issue: 4, page 285-302
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKropáč, Oldřich. "Some properties and applications of probability distributions based on MacDonald function." Aplikace matematiky 27.4 (1982): 285-302. <http://eudml.org/doc/15249>.
@article{Kropáč1982,
abstract = {In the paper the basic analytical properties of the MacDonald function (the modified Bessel function of the second kind) are summarized and the properties of some subclasses of distribution functions based on MacDonald function, especially of the types $x^nK_n(x), x\ge 0, \left|x\right|^n K_n(x\left|x\right|), x\in \mathbf \{R\}$ and $x^\{n+1\}K_n(x), x\ge 0$ are discussed. The distribution functions mentioned are useful for analytical modelling of composed (mixed) distributions, especially for products of random variables having distributions of the exponential type. Extensive and useful applications may be found in the field of non-Gaussian random processes, the marginal and joint probability densities of which and of their envelopes may be described by means of the types discussed.},
author = {Kropáč, Oldřich},
journal = {Aplikace matematiky},
keywords = {MacDonald function; Bessel function of the second kind; composed distributions; MacDonald function; Bessel function of the second kind; composed distributions},
language = {eng},
number = {4},
pages = {285-302},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties and applications of probability distributions based on MacDonald function},
url = {http://eudml.org/doc/15249},
volume = {27},
year = {1982},
}
TY - JOUR
AU - Kropáč, Oldřich
TI - Some properties and applications of probability distributions based on MacDonald function
JO - Aplikace matematiky
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 27
IS - 4
SP - 285
EP - 302
AB - In the paper the basic analytical properties of the MacDonald function (the modified Bessel function of the second kind) are summarized and the properties of some subclasses of distribution functions based on MacDonald function, especially of the types $x^nK_n(x), x\ge 0, \left|x\right|^n K_n(x\left|x\right|), x\in \mathbf {R}$ and $x^{n+1}K_n(x), x\ge 0$ are discussed. The distribution functions mentioned are useful for analytical modelling of composed (mixed) distributions, especially for products of random variables having distributions of the exponential type. Extensive and useful applications may be found in the field of non-Gaussian random processes, the marginal and joint probability densities of which and of their envelopes may be described by means of the types discussed.
LA - eng
KW - MacDonald function; Bessel function of the second kind; composed distributions; MacDonald function; Bessel function of the second kind; composed distributions
UR - http://eudml.org/doc/15249
ER -
References
top- H. Bateman A. Erdélyi, Higher transcendental functions, Vol. 2. New York, McGraw-Hill, 1953. (1953) MR0058756
- H. Bateman A. Erdélyi, Tables of integral transforms, Vol. I, II, New York, McGraw-Hill, 1954. (1954) MR0061695
- K. C. Chu, 10.1109/TAC.1973.1100374, IEEE Trans. Autom. Control, AC-18, 1973, pp. 499-505. (1973) Zbl0263.93049MR0441500DOI10.1109/TAC.1973.1100374
- C. C. Craig, 10.1214/aoms/1177732541, Ann. Math. Statist., 7, 1936, pp. 1 - 15. (1936) DOI10.1214/aoms/1177732541
- E. M. Elderton, 10.1093/biomet/21.1-4.194, Biometrika, 21, 1929, pp. 194-201. (1929) DOI10.1093/biomet/21.1-4.194
- Jahnke-Emde-Lösch, Tafeln höherer Funktionen, Stuttgart, Teubner, 1960. (1960)
- N. L. Johnson S. Kotz, Continuous multivariate distributions, New York, J. Wiley, 1972. (1972)
- O. Kropáč, Relations between distributions of random vibratory processes and distributions of their envelopes, Aplik. Matem., 17, 1972, pp. 75-112. (1972) MR0299032
- O. Kropáč, Rozdělení s náhodnými parametry a jejich inženýrské aplikace, Strojn. Čas. 33, 1980, pp. 597-622. (1980)
- O. Kropáč, 10.1016/0022-460X(81)90326-6, J. Sound Vibr., 79, 1981, pp. 11 - 21. (1981) MR0634635DOI10.1016/0022-460X(81)90326-6
- O. Kropáč, Some general properties of elliptically symmetric random processes, Kybernetika, 17, 1981, pp. 401-412. (1981) MR0648212
- S. Kullback, 10.1214/aoms/1177732546, Ann. Math. Statist., 7, 1936, pp. 51 - 53. (1936) DOI10.1214/aoms/1177732546
- D. K. McGraw J. F. Wagner, 10.1109/TIT.1968.1054081, IEEE Trans. Inform. Theory, IT-14, 1968, pp. 110-120. (1968) DOI10.1109/TIT.1968.1054081
- K. Pearson G. B. Jeffery E. M. Elderton, 10.1093/biomet/21.1-4.164, Biometrika, 21, 1929, pp. 164-193. (1929) DOI10.1093/biomet/21.1-4.164
- K. Pearson S. A. Stouffer F. N. David, Further applications in statistics of the Bessel function, Biometrika, 24, 1932, pp. 293 - 350. (1932)
- D. Teichrow, 10.1214/aoms/1177706981, Ann. Math. Statist., 28, 1957, pp. 510-512. (1957) MR0089551DOI10.1214/aoms/1177706981
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge, Univ. Press, 1944 (2nd edit.). (1944) Zbl0063.08184MR0010746
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.