Page 1 Next

Displaying 1 – 20 of 138

Showing per page

A general quadrature formula using zeros of spherical Bessel functions as nodes

Riadh Ben Ghanem, Clément Frappier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We obtain, for entire functions of exponential type satisfying certain integrability conditions, a quadrature formula using the zeros of spherical Bessel functions as nodes. We deduce from this quadrature formula a result of Olivier and Rahman, which refines itself a formula of Boas.

Asymptotic analysis of the Askey-scheme I: from Krawtchouk to Charlier

Diego Dominici (2007)

Open Mathematics

We analyze the Charlier polynomials C n(χ) and their zeros asymptotically as n → ∞. We obtain asymptotic approximations, using the limit relation between the Krawtchouk and Charlier polynomials, involving some special functions. We give numerical examples showing the accuracy of our formulas.

Bessel matrix differential equations: explicit solutions of initial and two-point boundary value problems

Enrique Navarro, Rafael Company, Lucas Jódar (1993)

Applicationes Mathematicae

In this paper we consider Bessel equations of the type t 2 X ( 2 ) ( t ) + t X ( 1 ) ( t ) + ( t 2 I - A 2 ) X ( t ) = 0 , where A is an n × n complex matrix and X(t) is an n × m matrix for t > 0. Following the ideas of the scalar case we introduce the concept of a fundamental set of solutions for the above equation expressed in terms of the data dimension. This concept allows us to give an explicit closed form solution of initial and two-point boundary value problems related to the Bessel equation.

Cálculo rápido de las funciones de Bessel modificadas Kis(X) e Iis(X) y sus derivadas.

Lluís Closas Torrente, Juan Antonio Fernández Rubio (1987)

Stochastica

En este trabajo discutimos la resolución de la ecuación de Besseld2x/dx2 + (1/x)(dy/dx) - (1 - s2/x2)y = 0.Las funciones de Bessel modificadas Kv(x) e Iv(x) son las soluciones a la ecuación anterior cuando v = is. El valor de la función Kis(x) es real y el de la función Iis(x) es complejo, por ello definimos en su lugar una función real Mis(x). La función Iis(x) resultará ser una combinación de las funciones Kis(x) y Mis(x). Daremos algunos desarrollos en serie de Mis(x) y Kis(x) junto con sus derivadas...

Currently displaying 1 – 20 of 138

Page 1 Next