A bilinear generating function for Bessel polynomials
We obtain, for entire functions of exponential type satisfying certain integrability conditions, a quadrature formula using the zeros of spherical Bessel functions as nodes. We deduce from this quadrature formula a result of Olivier and Rahman, which refines itself a formula of Boas.
We introduce and study some new subclasses of starlike, convex and close-to-convex functions defined by the generalized Bessel operator. Inclusion relations are established and integral operator in these subclasses is discussed.
The aim of the present note is to derive an integral transform involving the product of the Whittaker function and the Bessel function of the first kind of order . As a by-product, we also derive certain new integral transforms as particular cases for some special values of the parameters and of the Whittaker function. Eventually, we show the application of the integral in the propagation of hollow higher-order circular Lorentz-cosh-Gaussian beams through an ABCD optical system (see,...
We analyze the Charlier polynomials C n(χ) and their zeros asymptotically as n → ∞. We obtain asymptotic approximations, using the limit relation between the Krawtchouk and Charlier polynomials, involving some special functions. We give numerical examples showing the accuracy of our formulas.
In this paper we consider Bessel equations of the type , where A is an nn complex matrix and X(t) is an nm matrix for t > 0. Following the ideas of the scalar case we introduce the concept of a fundamental set of solutions for the above equation expressed in terms of the data dimension. This concept allows us to give an explicit closed form solution of initial and two-point boundary value problems related to the Bessel equation.
En este trabajo discutimos la resolución de la ecuación de Besseld2x/dx2 + (1/x)(dy/dx) - (1 - s2/x2)y = 0.Las funciones de Bessel modificadas Kv(x) e Iv(x) son las soluciones a la ecuación anterior cuando v = is. El valor de la función Kis(x) es real y el de la función Iis(x) es complejo, por ello definimos en su lugar una función real Mis(x). La función Iis(x) resultará ser una combinación de las funciones Kis(x) y Mis(x). Daremos algunos desarrollos en serie de Mis(x) y Kis(x) junto con sus derivadas...