On the distributions of and
Aplikace matematiky (1982)
- Volume: 27, Issue: 6, page 417-425
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSaran, Jagdish, and Sen, Kanwar. "On the distributions of $R^+_{mn}(j)$ and $(D^+_{mn}, R^+_{mn}(j))$." Aplikace matematiky 27.6 (1982): 417-425. <http://eudml.org/doc/15262>.
@article{Saran1982,
abstract = {The contents of the paper is concerned with the two-sample problem where $F_m(x)$ and $G_n(x)$ are two empirical distribution functions. The difference $F_m(x)-G_n(x)$ changes only at an $x_i, i=1,2,\ldots , m+n$, corresponding to one of the observations. Let $R^+_\{mn\}(j)$ denote the subscript $i$ for which $F_m(x_i)-G_n(x_i)$ achieves its maximum value $D^+_\{mn\}$ for the $j$th time $(j=1,2,\ldots )$. The paper deals with the probabilities for $R^+_\{mn\}(j)$ and for the vector $(D^+_\{mn\}, R^+_\{mn\}(j))$ under $H_0 : F=G$, thus generalizing the results of Steck-Simmons (1973). These results have been derived by applying the random walk model.},
author = {Saran, Jagdish, Sen, Kanwar},
journal = {Aplikace matematiky},
keywords = {points of maximal deviation; two-sample Smirnov statistic; empirical distribution functions; joint distribution; random walk model; points of maximal deviation; two-sample Smirnov statistic; empirical distribution functions; joint distribution; random walk model},
language = {eng},
number = {6},
pages = {417-425},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the distributions of $R^+_\{mn\}(j)$ and $(D^+_\{mn\}, R^+_\{mn\}(j))$},
url = {http://eudml.org/doc/15262},
volume = {27},
year = {1982},
}
TY - JOUR
AU - Saran, Jagdish
AU - Sen, Kanwar
TI - On the distributions of $R^+_{mn}(j)$ and $(D^+_{mn}, R^+_{mn}(j))$
JO - Aplikace matematiky
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 27
IS - 6
SP - 417
EP - 425
AB - The contents of the paper is concerned with the two-sample problem where $F_m(x)$ and $G_n(x)$ are two empirical distribution functions. The difference $F_m(x)-G_n(x)$ changes only at an $x_i, i=1,2,\ldots , m+n$, corresponding to one of the observations. Let $R^+_{mn}(j)$ denote the subscript $i$ for which $F_m(x_i)-G_n(x_i)$ achieves its maximum value $D^+_{mn}$ for the $j$th time $(j=1,2,\ldots )$. The paper deals with the probabilities for $R^+_{mn}(j)$ and for the vector $(D^+_{mn}, R^+_{mn}(j))$ under $H_0 : F=G$, thus generalizing the results of Steck-Simmons (1973). These results have been derived by applying the random walk model.
LA - eng
KW - points of maximal deviation; two-sample Smirnov statistic; empirical distribution functions; joint distribution; random walk model; points of maximal deviation; two-sample Smirnov statistic; empirical distribution functions; joint distribution; random walk model
UR - http://eudml.org/doc/15262
ER -
References
top- M. T. L. Bizley, 10.1017/S002026810005424X, J. Inst. Actuar. 80 (1954), 55-62. (1954) MR0061567DOI10.1017/S002026810005424X
- M. Dwass, 10.1214/aoms/1177698773, Ann. Math. Statist. 38 (1967), 1042-1053. (1967) Zbl0162.50204MR0215463DOI10.1214/aoms/1177698773
- N. L. Geller, Two limiting distributions for two-sample Kolmogorov-Smirnov type statistics, Report No. 5, Centre for System Science, Case Western Reserve University, Cleveland, Ohio, (1971). (1971)
- I. Očka, Simple random walk and rank order statistics, Apl. mat. 22 (1977), 272-290. (1977) MR0438583
- K. Sarkadi, On Galton's rank order test, Publ. Math. Inst. Hungar. Acad. Sci. 6 (1961), 125-128. (1961)
- Z. Šidák, Applications of Random Walks in Nonparametric Statistics, Bull. Internat. Statist. Inst., Proc. of the 39th session, vol. 45 (1973), book 3, 34-42. (1973) MR0356357
- G. P. Steck, 10.1214/aoms/1177697516, Ann. Math. Statist. 40 (1969), 1449-1466. (1969) Zbl0186.52304MR0246473DOI10.1214/aoms/1177697516
- G. P. Steck G. J. Simmons, On the distributions of and , Studia Sci. Math. Hung. 8(1973), 79-89. (1973) MR0339374
- I. Vincze, Einige Zweidimensionale Verteilungs und Grenzverteilungssätze in der Theorie der geordneten Stichproben, Publ. Math. Inst. Hungar. Acad. Sci. 2 (1957), 183 - 209. (1957) MR0105172
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.