Further convergence results for two quadrature rules for Cauchy type principal value integrals

Nikolaos I. Ioakimidis

Aplikace matematiky (1982)

  • Volume: 27, Issue: 6, page 457-466
  • ISSN: 0862-7940

Abstract

top
New convergence and rate-of-convergence results are established for two well-known quadrature rules for the numerical evaluation of Cauchy type principal value integrals along a finite interval, namely the Gauss quadrature rule and a similar interpolatory quadrature rule where the same nodes as in the Gauss rule are used. The main result concerns the convergence of the interpolatory rule for functions satisfying the Hölder condition with exponent less or equal to 1 2 . The results obtained here supplement a series of previous results on the convergence of the aforementioned quadrature rules.

How to cite

top

Ioakimidis, Nikolaos I.. "Further convergence results for two quadrature rules for Cauchy type principal value integrals." Aplikace matematiky 27.6 (1982): 457-466. <http://eudml.org/doc/15266>.

@article{Ioakimidis1982,
abstract = {New convergence and rate-of-convergence results are established for two well-known quadrature rules for the numerical evaluation of Cauchy type principal value integrals along a finite interval, namely the Gauss quadrature rule and a similar interpolatory quadrature rule where the same nodes as in the Gauss rule are used. The main result concerns the convergence of the interpolatory rule for functions satisfying the Hölder condition with exponent less or equal to $\frac\{1\}\{2\}$. The results obtained here supplement a series of previous results on the convergence of the aforementioned quadrature rules.},
author = {Ioakimidis, Nikolaos I.},
journal = {Aplikace matematiky},
keywords = {rate-of-convergence; quadrature rules; Cauchy type principal value integrals; finite interval; Gauss quadrature; interpolatory quadrature; rate-of-convergence; quadrature rules; Cauchy type principal value integrals; finite interval; Gauss quadrature; interpolatory quadrature},
language = {eng},
number = {6},
pages = {457-466},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Further convergence results for two quadrature rules for Cauchy type principal value integrals},
url = {http://eudml.org/doc/15266},
volume = {27},
year = {1982},
}

TY - JOUR
AU - Ioakimidis, Nikolaos I.
TI - Further convergence results for two quadrature rules for Cauchy type principal value integrals
JO - Aplikace matematiky
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 27
IS - 6
SP - 457
EP - 466
AB - New convergence and rate-of-convergence results are established for two well-known quadrature rules for the numerical evaluation of Cauchy type principal value integrals along a finite interval, namely the Gauss quadrature rule and a similar interpolatory quadrature rule where the same nodes as in the Gauss rule are used. The main result concerns the convergence of the interpolatory rule for functions satisfying the Hölder condition with exponent less or equal to $\frac{1}{2}$. The results obtained here supplement a series of previous results on the convergence of the aforementioned quadrature rules.
LA - eng
KW - rate-of-convergence; quadrature rules; Cauchy type principal value integrals; finite interval; Gauss quadrature; interpolatory quadrature; rate-of-convergence; quadrature rules; Cauchy type principal value integrals; finite interval; Gauss quadrature; interpolatory quadrature
UR - http://eudml.org/doc/15266
ER -

References

top
  1. E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966. (1966) Zbl0161.25202MR0222517
  2. D. Elliott, On the Convergence of Hunter's Quadrature Rule for Cauchy Principal Value Integrals, Nordisk Tidskrift for Informationsbehandling (BIT), 1979, Vol. 19, pp. 457-462. (1979) Zbl0418.65011MR0559954
  3. D. Elliott, D. F. Paget, 10.1007/BF01438258, Numerische Mathematik, 1975, Vol. 23, pp. 311 - 319. (1975) Zbl0313.65019MR0380215DOI10.1007/BF01438258
  4. D. Elliott, D. F. Paget, 10.1007/BF01399417, Numerische Mathematik, 1976, Vol. 25, pp. 287-289. (1976) Zbl0321.65017MR0411131DOI10.1007/BF01399417
  5. D. Elliott, D. F. Paget, 10.1090/S0025-5718-1979-0514825-2, Mathematics of Computation, 1979, Vol. 33, pp. 301 - 309. (1979) Zbl0415.65019MR0514825DOI10.1090/S0025-5718-1979-0514825-2
  6. G. Freud, Orthogonal Polynomials, 1st English ed. Pergamon Press, Oxford, 1971. (1971) Zbl0226.33014MR0294981
  7. D. B. Hunter, 10.1007/BF01404924, Numerische Mathematik, 1972, Vol. 19, pp. 419-424. (1972) Zbl0231.65028MR0319355DOI10.1007/BF01404924
  8. N. I. Ioakimidis, General Methods for the Solution of Crack Problems in the Theory of Plane Elasticity, Doctoral Thesis at the National Technical University of Athens, Athens, 1976. [Available from University Microfilms, Ann Arbor, Michigan; Order No. 76-21, 056.] (1976) Zbl0351.73109MR0521392
  9. N. I. Ioakimidis, P. S. Theocaris, On the Numerical Evaluation of Cauchy Principal Value Integrals, Revue Roumaine des Sciences Techniques - Série de Mécanique Appliquée, 1977, Vol. 22, pp. 803-818. (1977) Zbl0376.65009MR0483321
  10. A. I. Kalandiya, Mathematical Methods of Two-dimensional Elasticity, 1st English ed. Mir Publishers, Moscow, 1975. (1975) MR0400846
  11. A. A. Korneichuk, Quadrature Formulae for Singular Integrals, In: Numerical Methods for the Solution of Differential and Integral Equations and Quadrature Formulae, Moscow, Nauka, 1964, pp. 64-74 (in Russian). (1964) 
  12. D. F. Paget, D. Elliott, 10.1007/BF01404920, Numerische Mathematik, 1972, Vol. 19, pp. 373 - 385. (1972) Zbl0229.65091MR0366004DOI10.1007/BF01404920
  13. T. J. Rivlin, An Introduction to the Approximation of Functions, 1st ed. Blaisdell, Waltham, Massachusetts, 1969. (1969) Zbl0189.06601MR0249885
  14. D. G. Sanikidze, On a Uniform Estimation of Approximation of Singular Integrals with Chebyshev's Weight Function by Sums of Interpolating Type, Soobščenija Akademii Nauk Gruzinskoī SSR, 1974, Vol. 75 (No. 1), pp. 53-55 (in Russian). (1974) MR0358242
  15. M. A. Sheshko, On the Convergence of Quadrature Processes for a Singular Integral, Soviet Mathematics (Izvestija Vysših Učebnyh Zavedeniī. Matematika), 1976, Vol. 20 (No. 12), pp. 86-94. (1976) 
  16. G. Szegö, Orthogonal Polynomials, revised ed. American Mathematical Society, New York, 1959. (1959) MR0106295
  17. P. S. Theocaris, G. J. Tsamasphyros, On the Convergence of a Gauss Quadrature Rule for Evaluation of Cauchy Type Singular Integrals, Nordisk Tidskrift for Informationsbehandling (BIT), 1977, Vol. 17, pp. 458-464. (1977) Zbl0391.65004MR0468120

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.