Further convergence results for two quadrature rules for Cauchy type principal value integrals
Aplikace matematiky (1982)
- Volume: 27, Issue: 6, page 457-466
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topIoakimidis, Nikolaos I.. "Further convergence results for two quadrature rules for Cauchy type principal value integrals." Aplikace matematiky 27.6 (1982): 457-466. <http://eudml.org/doc/15266>.
@article{Ioakimidis1982,
abstract = {New convergence and rate-of-convergence results are established for two well-known quadrature rules for the numerical evaluation of Cauchy type principal value integrals along a finite interval, namely the Gauss quadrature rule and a similar interpolatory quadrature rule where the same nodes as in the Gauss rule are used. The main result concerns the convergence of the interpolatory rule for functions satisfying the Hölder condition with exponent less or equal to $\frac\{1\}\{2\}$. The results obtained here supplement a series of previous results on the convergence of the aforementioned quadrature rules.},
author = {Ioakimidis, Nikolaos I.},
journal = {Aplikace matematiky},
keywords = {rate-of-convergence; quadrature rules; Cauchy type principal value integrals; finite interval; Gauss quadrature; interpolatory quadrature; rate-of-convergence; quadrature rules; Cauchy type principal value integrals; finite interval; Gauss quadrature; interpolatory quadrature},
language = {eng},
number = {6},
pages = {457-466},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Further convergence results for two quadrature rules for Cauchy type principal value integrals},
url = {http://eudml.org/doc/15266},
volume = {27},
year = {1982},
}
TY - JOUR
AU - Ioakimidis, Nikolaos I.
TI - Further convergence results for two quadrature rules for Cauchy type principal value integrals
JO - Aplikace matematiky
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 27
IS - 6
SP - 457
EP - 466
AB - New convergence and rate-of-convergence results are established for two well-known quadrature rules for the numerical evaluation of Cauchy type principal value integrals along a finite interval, namely the Gauss quadrature rule and a similar interpolatory quadrature rule where the same nodes as in the Gauss rule are used. The main result concerns the convergence of the interpolatory rule for functions satisfying the Hölder condition with exponent less or equal to $\frac{1}{2}$. The results obtained here supplement a series of previous results on the convergence of the aforementioned quadrature rules.
LA - eng
KW - rate-of-convergence; quadrature rules; Cauchy type principal value integrals; finite interval; Gauss quadrature; interpolatory quadrature; rate-of-convergence; quadrature rules; Cauchy type principal value integrals; finite interval; Gauss quadrature; interpolatory quadrature
UR - http://eudml.org/doc/15266
ER -
References
top- E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966. (1966) Zbl0161.25202MR0222517
- D. Elliott, On the Convergence of Hunter's Quadrature Rule for Cauchy Principal Value Integrals, Nordisk Tidskrift for Informationsbehandling (BIT), 1979, Vol. 19, pp. 457-462. (1979) Zbl0418.65011MR0559954
- D. Elliott, D. F. Paget, 10.1007/BF01438258, Numerische Mathematik, 1975, Vol. 23, pp. 311 - 319. (1975) Zbl0313.65019MR0380215DOI10.1007/BF01438258
- D. Elliott, D. F. Paget, 10.1007/BF01399417, Numerische Mathematik, 1976, Vol. 25, pp. 287-289. (1976) Zbl0321.65017MR0411131DOI10.1007/BF01399417
- D. Elliott, D. F. Paget, 10.1090/S0025-5718-1979-0514825-2, Mathematics of Computation, 1979, Vol. 33, pp. 301 - 309. (1979) Zbl0415.65019MR0514825DOI10.1090/S0025-5718-1979-0514825-2
- G. Freud, Orthogonal Polynomials, 1st English ed. Pergamon Press, Oxford, 1971. (1971) Zbl0226.33014MR0294981
- D. B. Hunter, 10.1007/BF01404924, Numerische Mathematik, 1972, Vol. 19, pp. 419-424. (1972) Zbl0231.65028MR0319355DOI10.1007/BF01404924
- N. I. Ioakimidis, General Methods for the Solution of Crack Problems in the Theory of Plane Elasticity, Doctoral Thesis at the National Technical University of Athens, Athens, 1976. [Available from University Microfilms, Ann Arbor, Michigan; Order No. 76-21, 056.] (1976) Zbl0351.73109MR0521392
- N. I. Ioakimidis, P. S. Theocaris, On the Numerical Evaluation of Cauchy Principal Value Integrals, Revue Roumaine des Sciences Techniques - Série de Mécanique Appliquée, 1977, Vol. 22, pp. 803-818. (1977) Zbl0376.65009MR0483321
- A. I. Kalandiya, Mathematical Methods of Two-dimensional Elasticity, 1st English ed. Mir Publishers, Moscow, 1975. (1975) MR0400846
- A. A. Korneichuk, Quadrature Formulae for Singular Integrals, In: Numerical Methods for the Solution of Differential and Integral Equations and Quadrature Formulae, Moscow, Nauka, 1964, pp. 64-74 (in Russian). (1964)
- D. F. Paget, D. Elliott, 10.1007/BF01404920, Numerische Mathematik, 1972, Vol. 19, pp. 373 - 385. (1972) Zbl0229.65091MR0366004DOI10.1007/BF01404920
- T. J. Rivlin, An Introduction to the Approximation of Functions, 1st ed. Blaisdell, Waltham, Massachusetts, 1969. (1969) Zbl0189.06601MR0249885
- D. G. Sanikidze, On a Uniform Estimation of Approximation of Singular Integrals with Chebyshev's Weight Function by Sums of Interpolating Type, Soobščenija Akademii Nauk Gruzinskoī SSR, 1974, Vol. 75 (No. 1), pp. 53-55 (in Russian). (1974) MR0358242
- M. A. Sheshko, On the Convergence of Quadrature Processes for a Singular Integral, Soviet Mathematics (Izvestija Vysših Učebnyh Zavedeniī. Matematika), 1976, Vol. 20 (No. 12), pp. 86-94. (1976)
- G. Szegö, Orthogonal Polynomials, revised ed. American Mathematical Society, New York, 1959. (1959) MR0106295
- P. S. Theocaris, G. J. Tsamasphyros, On the Convergence of a Gauss Quadrature Rule for Evaluation of Cauchy Type Singular Integrals, Nordisk Tidskrift for Informationsbehandling (BIT), 1977, Vol. 17, pp. 458-464. (1977) Zbl0391.65004MR0468120
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.