Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields.

W. Müller; F. Halter-Koch

Journal für die reine und angewandte Mathematik (1991)

  • Volume: 421, page 159-188
  • ISSN: 0075-4102; 1435-5345/e

How to cite

top

Müller, W., and Halter-Koch, F.. "Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields.." Journal für die reine und angewandte Mathematik 421 (1991): 159-188. <http://eudml.org/doc/153369>.

@article{Müller1991,
author = {Müller, W., Halter-Koch, F.},
journal = {Journal für die reine und angewandte Mathematik},
keywords = {Dedekind domain; asymptotic behaviour; number of elements; quantitative results; non-unique factorization; rings of integers in algebraic number fields; holomorphy rings in algebraic function fields; Hilbert semigroups; formation; Dirichlet series},
pages = {159-188},
title = {Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields.},
url = {http://eudml.org/doc/153369},
volume = {421},
year = {1991},
}

TY - JOUR
AU - Müller, W.
AU - Halter-Koch, F.
TI - Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields.
JO - Journal für die reine und angewandte Mathematik
PY - 1991
VL - 421
SP - 159
EP - 188
KW - Dedekind domain; asymptotic behaviour; number of elements; quantitative results; non-unique factorization; rings of integers in algebraic number fields; holomorphy rings in algebraic function fields; Hilbert semigroups; formation; Dirichlet series
UR - http://eudml.org/doc/153369
ER -

Citations in EuDML Documents

top
  1. Franz Halter-Koch, Factorization problems in class number two
  2. Franz Halter-Koch, A generalization of Davenport's constant and its arithmetical applications
  3. Franz Halter-Koch, Relative block semigroups and their arithmetical applications
  4. Alfred Geroldinger, Jerzy Kaczorowski, Analytic and arithmetic theory of semigroups with divisor theory
  5. Alfred Geroldinger, Franz Halter-Koch, Non-unique factorizations in block semigroups and arithmetical applications
  6. Franz Halter-Koch, Chebotarev formations and quantitative aspects of non-unique factorizations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.