A generalization of Davenport's constant and its arithmetical applications

Franz Halter-Koch

Colloquium Mathematicae (1992)

  • Volume: 63, Issue: 2, page 203-210
  • ISSN: 0010-1354

How to cite

top

Halter-Koch, Franz. "A generalization of Davenport's constant and its arithmetical applications." Colloquium Mathematicae 63.2 (1992): 203-210. <http://eudml.org/doc/210146>.

@article{Halter1992,
author = {Halter-Koch, Franz},
journal = {Colloquium Mathematicae},
keywords = {Davenport's constant; asymptotic formulas; ideal class group; number of principal ideals; factorizations into irreducibles},
language = {eng},
number = {2},
pages = {203-210},
title = {A generalization of Davenport's constant and its arithmetical applications},
url = {http://eudml.org/doc/210146},
volume = {63},
year = {1992},
}

TY - JOUR
AU - Halter-Koch, Franz
TI - A generalization of Davenport's constant and its arithmetical applications
JO - Colloquium Mathematicae
PY - 1992
VL - 63
IS - 2
SP - 203
EP - 210
LA - eng
KW - Davenport's constant; asymptotic formulas; ideal class group; number of principal ideals; factorizations into irreducibles
UR - http://eudml.org/doc/210146
ER -

References

top
  1. [1] P. C. Baayen, Een combinatorisch problem voor eindige Abelse groepen, Math. Centrum Syllabus 5, Coll. Discrete Wiskunde Caput 3, Math. Centre Amsterdam, 1968. 
  2. [2] P. van Emde Boas, A combinatorial problem on finite Abelian groups II, Stichting Mathematisch Centrum Amsterdam, Report ZW 1969-007, 1969. 
  3. [3] P. van Emde Boas and D. Kruyswijk, A combinatorial problem on finite abelian groups III, Stichting Mathematisch Centrum Amsterdam, Report ZW 1969-008, 1969. Zbl0245.20046
  4. [4] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z. 197 (1988), 505-529. 
  5. [5] F. Halter-Koch, Factorization of algebraic integers, Ber. Math.-Stat. Sektion Forschungszentrum Graz 191 (1983). Zbl0506.12005
  6. [6] F. Halter-Koch and W. Müller, Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields, J. Reine Angew. Math. 421 (1991), 159-188. Zbl0736.11064
  7. [7] J. Kaczorowski, Some remarks on factorization in algebraic number fields, Acta Arith. 43 (1983), 53-68. Zbl0526.12006
  8. [8] W. Narkiewicz, Finite abelian groups and factorization problems, Colloq. Math. 42 (1979), 319-330. Zbl0514.12004
  9. [9] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer, 1990. Zbl0717.11045
  10. [10] J. E. Olson, A combinatorial problem on finite Abelian groups, I, J. Number Theory 1 (1969), 8-10. Zbl0169.02003
  11. [11] J. E. Olson, A combinatorial problem on finite Abelian groups, II, ibid., 195-199. Zbl0167.28004
  12. [12] P. Rémond, Étude asymptotique de certaines partitions dans certaines semi- groupes, Ann. Sci. École Norm. Sup. 83 (1966), 343-410. Zbl0157.09602

Citations in EuDML Documents

top
  1. Kálmán Cziszter, Mátyás Domokos, On the generalized Davenport constant and the Noether number
  2. Alfred Geroldinger, Jerzy Kaczorowski, Analytic and arithmetic theory of semigroups with divisor theory
  3. Kálmán Cziszter, Mátyás Domokos, Groups with large Noether bound
  4. Alfred Geroldinger, Franz Halter-Koch, Non-unique factorizations in block semigroups and arithmetical applications
  5. Franz Halter-Koch, Chebotarev formations and quantitative aspects of non-unique factorizations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.