Two characterizations of Pareto minima in convex multicriteria optimization

Sanjo Zlobec

Aplikace matematiky (1984)

  • Volume: 29, Issue: 5, page 342-349
  • ISSN: 0862-7940

Abstract

top
Two conditions are given each of which is both necessary and sufficient for a point to be a global Pareto minimum. The first one is obtained by studying programs where each criterion appears as a single objective function, while the second one is given in terms of a "restricted Lagrangian". The conditions are compared with the familiar characterizations of properly efficient and weakly efficient points of Karlin and Geoffrion.

How to cite

top

Zlobec, Sanjo. "Two characterizations of Pareto minima in convex multicriteria optimization." Aplikace matematiky 29.5 (1984): 342-349. <http://eudml.org/doc/15365>.

@article{Zlobec1984,
abstract = {Two conditions are given each of which is both necessary and sufficient for a point to be a global Pareto minimum. The first one is obtained by studying programs where each criterion appears as a single objective function, while the second one is given in terms of a "restricted Lagrangian". The conditions are compared with the familiar characterizations of properly efficient and weakly efficient points of Karlin and Geoffrion.},
author = {Zlobec, Sanjo},
journal = {Aplikace matematiky},
keywords = {optimality conditions; properly efficient point; weakly efficient point; characterization of optimality; convex multicriteria optimization; global Pareto minimum; restricted Lagrangian; optimality conditions; properly efficient point; weakly efficient point; characterization of optimality; convex multicriteria optimization; global Pareto minimum; restricted Lagrangian},
language = {eng},
number = {5},
pages = {342-349},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two characterizations of Pareto minima in convex multicriteria optimization},
url = {http://eudml.org/doc/15365},
volume = {29},
year = {1984},
}

TY - JOUR
AU - Zlobec, Sanjo
TI - Two characterizations of Pareto minima in convex multicriteria optimization
JO - Aplikace matematiky
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 5
SP - 342
EP - 349
AB - Two conditions are given each of which is both necessary and sufficient for a point to be a global Pareto minimum. The first one is obtained by studying programs where each criterion appears as a single objective function, while the second one is given in terms of a "restricted Lagrangian". The conditions are compared with the familiar characterizations of properly efficient and weakly efficient points of Karlin and Geoffrion.
LA - eng
KW - optimality conditions; properly efficient point; weakly efficient point; characterization of optimality; convex multicriteria optimization; global Pareto minimum; restricted Lagrangian; optimality conditions; properly efficient point; weakly efficient point; characterization of optimality; convex multicriteria optimization; global Pareto minimum; restricted Lagrangian
UR - http://eudml.org/doc/15365
ER -

References

top
  1. R. Abrams L. Kerzner, 10.1007/BF00933262, Journal of Optimization Theory and Applications 25 (1978), 161-170. (1978) MR0484413DOI10.1007/BF00933262
  2. A. Ben-Israel, 10.1016/0022-247X(69)90054-7, Journal of Mathematical Analysis and Applications 27 (1969), 367-389. (1969) Zbl0174.31502MR0242865DOI10.1016/0022-247X(69)90054-7
  3. A. Ben-Israel A. Ben-Tal A. Charnes, 10.2307/1912673, Econometrica 45 (1977), 811 - 820. (1977) MR0452684DOI10.2307/1912673
  4. A. Ben-Israel A. Ben-Tal S. Zlobec, Optimality in Nonlinear Programming: A Feasible Directions Approach, Wiley-Interscience, New York, 1981. (1981) MR0607673
  5. A. Ben-Tal A. Ben-Israel S. Zlobec, 10.1007/BF00933129, Journal cf Optimization Theory and Applications 20 (1976), 417-437. (1976) MR0439190DOI10.1007/BF00933129
  6. G. R. Bitran T. L. Magnanti, The structure of admissible points with respect to cone dominance, Journal of Optimization Theory and Applications 29 (1979), 473 - 514. (1979) MR0552107
  7. Y. Censor, 10.1007/BF01442131, Applied Mathematics and Optimization 4 (1977), 41 - 59. (1977) MR0488732DOI10.1007/BF01442131
  8. A. Charnes W. W. Cooper, Management Models and Industrial Applications of Linear Programming, Vol. I. Wiley, New York, 1961. (1961) MR0157774
  9. A. M. Geoffrion, 10.1016/0022-247X(68)90201-1, Journal of Mathematical Analysis and Applications 22 (1968), 618 - 630. (1968) Zbl0181.22806MR0229453DOI10.1016/0022-247X(68)90201-1
  10. S. Karlin, Mathematical Methods and Theory in Games. Programming and Economics, Vol. I, Addison-Wesley, Reading, Massachussetts, 1959. (1959) MR1160778
  11. V. V. Podinovskii, Applying the procedure for maximizing the basic local criterion to solving the vector optimization problems, Systems Control 6, Novosibirsk, 1970 (In Russian). (1970) 
  12. V. V. Podinovskii V. M. Gavrilov, Optimization with Respect to Successive Criteria, Soviet Radio, Moscow, 1975 (In Russian). (1975) MR0454779
  13. R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970. (1970) Zbl0193.18401MR0274683
  14. M. E. Salukvadze, Vector-Valued Optimization Problems in Control Theory, Academic Press, New York, 1979. (1979) Zbl0471.49001MR0563922
  15. S. Smale, 10.1016/0304-4068(74)90002-0, Journal of Mathematical Economics 1 (1974), 107-117. (1974) Zbl0316.90007MR0426823DOI10.1016/0304-4068(74)90002-0
  16. S. Smale, 10.1016/0304-4068(74)90013-5, Journal of Mathematical Economics 1 (1974), 213-221. (1974) Zbl0357.90010MR0426826DOI10.1016/0304-4068(74)90013-5
  17. S. Smale, 10.1016/0304-4068(76)90002-1, Journal of Mathematical Economics 3 (1976), 1-14. (1976) Zbl0348.90017MR0426827DOI10.1016/0304-4068(76)90002-1
  18. S. Zlobec, Regions of stability for ill-posed convex programs, Aplikace Matematiky 27 (1982), 176-191. (1982) Zbl0482.90073MR0658001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.