Regions of stability for ill-posed convex programs

Sanjo Zlobec

Aplikace matematiky (1982)

  • Volume: 27, Issue: 3, page 176-191
  • ISSN: 0862-7940

Abstract

top
Regions of stability are chunks of the space of parameters in which the optimal solution and the optimal value depend continuously on the data. In these regions the problem of solving an arbitrary convex program is a continuous process and Tihonov's regularization is possible. This paper introduces a new region we furnisch formulas for the marginal value. The importance of the regions of stability is demostrated on multicriteria decision making problems and in calculating the minimal index set of binding constraints in convex programming. These two nonlinear problems can be reduced to calculating a region of stability for a simple linear program. If Slater's condition holds, or for the rihgt hand side perurbations, the results reduce to the familiar ones.

How to cite

top

Zlobec, Sanjo. "Regions of stability for ill-posed convex programs." Aplikace matematiky 27.3 (1982): 176-191. <http://eudml.org/doc/15238>.

@article{Zlobec1982,
abstract = {Regions of stability are chunks of the space of parameters in which the optimal solution and the optimal value depend continuously on the data. In these regions the problem of solving an arbitrary convex program is a continuous process and Tihonov's regularization is possible. This paper introduces a new region we furnisch formulas for the marginal value. The importance of the regions of stability is demostrated on multicriteria decision making problems and in calculating the minimal index set of binding constraints in convex programming. These two nonlinear problems can be reduced to calculating a region of stability for a simple linear program. If Slater's condition holds, or for the rihgt hand side perurbations, the results reduce to the familiar ones.},
author = {Zlobec, Sanjo},
journal = {Aplikace matematiky},
keywords = {ill-posed convex programs; regions of stability; Tihonov’s regularization; formulas for the marginal value; multicriteria decision making; minimal index set of binding constraints; ill-posed convex programs; regions of stability; Tihonov's regularization; formulas for the marginal value; multicriteria decision making; minimal index set of binding constraints},
language = {eng},
number = {3},
pages = {176-191},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Regions of stability for ill-posed convex programs},
url = {http://eudml.org/doc/15238},
volume = {27},
year = {1982},
}

TY - JOUR
AU - Zlobec, Sanjo
TI - Regions of stability for ill-posed convex programs
JO - Aplikace matematiky
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 27
IS - 3
SP - 176
EP - 191
AB - Regions of stability are chunks of the space of parameters in which the optimal solution and the optimal value depend continuously on the data. In these regions the problem of solving an arbitrary convex program is a continuous process and Tihonov's regularization is possible. This paper introduces a new region we furnisch formulas for the marginal value. The importance of the regions of stability is demostrated on multicriteria decision making problems and in calculating the minimal index set of binding constraints in convex programming. These two nonlinear problems can be reduced to calculating a region of stability for a simple linear program. If Slater's condition holds, or for the rihgt hand side perurbations, the results reduce to the familiar ones.
LA - eng
KW - ill-posed convex programs; regions of stability; Tihonov’s regularization; formulas for the marginal value; multicriteria decision making; minimal index set of binding constraints; ill-posed convex programs; regions of stability; Tihonov's regularization; formulas for the marginal value; multicriteria decision making; minimal index set of binding constraints
UR - http://eudml.org/doc/15238
ER -

References

top
  1. R. Abrams L. Kerzner, 10.1007/BF00933262, Journal of Optimization Theory and Applications. 25 (1978), 161-170. (1978) MR0484413DOI10.1007/BF00933262
  2. A. Ben-Israel A. Ben-Tal S. Zlobec, Optimality in Nonlinear Programming: A Feasible Directions Approach, Wiley-Interscience, New York 1981. (1981) MR0607673
  3. A. Ben-Israel A. Ben-Tal A. Charnes, 10.2307/1912673, Econometrica 45 (1977), 811 - 820. (1977) MR0452684DOI10.2307/1912673
  4. A. Ben-Israel T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, New York 1974. (1974) MR0396607
  5. B. Brosowski, On parametric linear optimization, Optimization and Operations Research, Springer Verlag Lecture Notes in Economics and Mathematical Systems No. 157(R. Henn, B. Korte and W. Oettli, editors), Berlin, 1978, pp. 37-44. (1978) Zbl0405.90072MR0525726
  6. G. B. Dantzig J. Folkman N. Shapiro, 10.1016/0022-247X(67)90139-4, Journal of Mathematical Analysis and Applications 17 (1967), 519-548. (1967) MR0207426DOI10.1016/0022-247X(67)90139-4
  7. I. I. Eremin N. N. Astafiev, Introduction to the Theory of Linear and Convex Programming, Nauka, Moscow, 1976. (In Russian.) (1976) MR0475825
  8. J. P. Evans F. J. Gould, 10.1287/opre.18.1.107, Operations Research 18 (1970), 107-118. (1970) MR0264984DOI10.1287/opre.18.1.107
  9. A. V. Fiacco, 10.1007/BF00935606, Journal of Optimization Theory and Applications 13 (1974), 1-12. (1974) Zbl0255.90047MR0334946DOI10.1007/BF00935606
  10. J. Gauvin J. W. Tolle, 10.1137/0315020, SlAM Journal on Control and Optimization 15 (1977), 294-311. (1977) MR0441352DOI10.1137/0315020
  11. H. J. Greenberg W. P. Pierskalla, 10.1287/opre.20.1.143, Operations Research 20 (1972), 143-153. (1972) MR0316101DOI10.1287/opre.20.1.143
  12. J. Guddat, 10.1080/02331887608801291, Mathematische Operationsforschung und Statistik 7 (1976), 223 - 245. (1976) MR0408827DOI10.1080/02331887608801291
  13. W. Krabs, Stetige Abänderung der Daten bei nichtlinearer Optimierung und ihre Konsequenzen, Operations Research Verfahren XXV 1 (1977), 93-113. (1977) Zbl0401.90094
  14. B. Kummer, Global stability of optimization problems, Mathematische Operationsforschung und Statistik, series Optimization (1977). (1977) Zbl0376.90083MR0478618
  15. O. Mangasarian, Nonlinear Programmirg, McGraw-Hill, New York, 1969. (1969) MR0252038
  16. D. H. Martin, 10.1007/BF00933875, Journal of Optimization Theory and Applications 17 (1975), 205-210. (1975) Zbl0298.90041MR0386676DOI10.1007/BF00933875
  17. V. D. Mazurov, The solution of an ill-posed linear optimization problem under contradictory conditions, Supplement to Ekonomika i Matematičeskii Metody, Collection No. 3 (1972), 17-23. (In Russian.) (1972) MR0391950
  18. M. Z. Nashed (editor), Generalized Inverses and Applications, Academic Press, New York, 1976. (1976) 
  19. F. Nožička J. Guddat H. Hollatz B. Bank, Theorie der linearen parametrische Optimierung, Akademie - Verlag, Berlin, 1974. (1974) 
  20. M. S. A. Osman, Qualitative analysis of basic notions in parametric convex programming, I, Aplikace Matematiky 22 (1977), 318-332. (1977) Zbl0383.90097MR0449692
  21. M. S. A. Osman, Qualitative analysis of basic notions in parametric convex programming, II, Aplikace Matematiky 22 (1977), 333-348. (1977) Zbl0383.90098MR0449693
  22. S. M. Robinson, A characterization of stability in linear programming, MRC Technical Report 1542, University of Wisconsin, Madison (1975). (1975) 
  23. T. R. Rockafellar, Convex Analysis, Princeton University Press, 1970. (1970) Zbl0193.18401MR0274683
  24. A. N. Tihonov V. Y. Arsenin, Solutions of Ill-Posed Problems, Winston, Washington D. C., 1977. (1977) MR0455365
  25. A. C. Williams, 10.1137/0111006, Journal of the Society of Industrial and Applied Mathematics 11 (1963), 82-94. (1963) Zbl0115.38102MR0184725DOI10.1137/0111006
  26. H. Wolkowicz, 10.1007/BF00932906, Journal of Optimization Theory and Applications 25 (1978), 451-457. (1978) MR0525723DOI10.1007/BF00932906
  27. S. Zlobec, Marginal values for arbitrarily perturbed convex programs, Glasnik Matematički (1982, forthcoming). (1982) MR0658001
  28. S. Zlobec A. Ben-Israel, Perturbed convex programs: continuity of optimal solutions and optimal values, Operations Research Verfahren XXXI 1 (1979), 737-749. (1979) 
  29. S. Zlobec A. Ben-Israel, 10.1080/02331937908842560, Mathematische Operationsforschung und Statistik, series Optimization 10 (1979), 171 - 178. (1979) MR0548525DOI10.1080/02331937908842560
  30. S. Zlobec B. Craven, 10.1080/02331938108842721, Mathematische Operationsforschung und Statistik, series Optimization 12 (1981), 203-220, (1981) MR0619646DOI10.1080/02331938108842721
  31. S. Zlobec R. Gardner A. Ben-Israel, Regions of stability for arbitrarily perturbed convex programs, In Mathematical Programming with Data Perturbations I (A. V. Fiacco, ed.), M. Dekker, New York, 1982, 69-89. (1982) MR0652938

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.