Regions of stability for ill-posed convex programs
Aplikace matematiky (1982)
- Volume: 27, Issue: 3, page 176-191
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZlobec, Sanjo. "Regions of stability for ill-posed convex programs." Aplikace matematiky 27.3 (1982): 176-191. <http://eudml.org/doc/15238>.
@article{Zlobec1982,
abstract = {Regions of stability are chunks of the space of parameters in which the optimal solution and the optimal value depend continuously on the data. In these regions the problem of solving an arbitrary convex program is a continuous process and Tihonov's regularization is possible.
This paper introduces a new region we furnisch formulas for the marginal value. The importance of the regions of stability is demostrated on multicriteria decision making problems and in calculating the minimal index set of binding constraints in convex programming. These two nonlinear problems can be reduced to calculating a region of stability for a simple linear program. If Slater's condition holds, or for the rihgt hand side perurbations, the results reduce to the familiar ones.},
author = {Zlobec, Sanjo},
journal = {Aplikace matematiky},
keywords = {ill-posed convex programs; regions of stability; Tihonov’s regularization; formulas for the marginal value; multicriteria decision making; minimal index set of binding constraints; ill-posed convex programs; regions of stability; Tihonov's regularization; formulas for the marginal value; multicriteria decision making; minimal index set of binding constraints},
language = {eng},
number = {3},
pages = {176-191},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Regions of stability for ill-posed convex programs},
url = {http://eudml.org/doc/15238},
volume = {27},
year = {1982},
}
TY - JOUR
AU - Zlobec, Sanjo
TI - Regions of stability for ill-posed convex programs
JO - Aplikace matematiky
PY - 1982
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 27
IS - 3
SP - 176
EP - 191
AB - Regions of stability are chunks of the space of parameters in which the optimal solution and the optimal value depend continuously on the data. In these regions the problem of solving an arbitrary convex program is a continuous process and Tihonov's regularization is possible.
This paper introduces a new region we furnisch formulas for the marginal value. The importance of the regions of stability is demostrated on multicriteria decision making problems and in calculating the minimal index set of binding constraints in convex programming. These two nonlinear problems can be reduced to calculating a region of stability for a simple linear program. If Slater's condition holds, or for the rihgt hand side perurbations, the results reduce to the familiar ones.
LA - eng
KW - ill-posed convex programs; regions of stability; Tihonov’s regularization; formulas for the marginal value; multicriteria decision making; minimal index set of binding constraints; ill-posed convex programs; regions of stability; Tihonov's regularization; formulas for the marginal value; multicriteria decision making; minimal index set of binding constraints
UR - http://eudml.org/doc/15238
ER -
References
top- R. Abrams L. Kerzner, 10.1007/BF00933262, Journal of Optimization Theory and Applications. 25 (1978), 161-170. (1978) MR0484413DOI10.1007/BF00933262
- A. Ben-Israel A. Ben-Tal S. Zlobec, Optimality in Nonlinear Programming: A Feasible Directions Approach, Wiley-Interscience, New York 1981. (1981) MR0607673
- A. Ben-Israel A. Ben-Tal A. Charnes, 10.2307/1912673, Econometrica 45 (1977), 811 - 820. (1977) MR0452684DOI10.2307/1912673
- A. Ben-Israel T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, New York 1974. (1974) MR0396607
- B. Brosowski, On parametric linear optimization, Optimization and Operations Research, Springer Verlag Lecture Notes in Economics and Mathematical Systems No. 157(R. Henn, B. Korte and W. Oettli, editors), Berlin, 1978, pp. 37-44. (1978) Zbl0405.90072MR0525726
- G. B. Dantzig J. Folkman N. Shapiro, 10.1016/0022-247X(67)90139-4, Journal of Mathematical Analysis and Applications 17 (1967), 519-548. (1967) MR0207426DOI10.1016/0022-247X(67)90139-4
- I. I. Eremin N. N. Astafiev, Introduction to the Theory of Linear and Convex Programming, Nauka, Moscow, 1976. (In Russian.) (1976) MR0475825
- J. P. Evans F. J. Gould, 10.1287/opre.18.1.107, Operations Research 18 (1970), 107-118. (1970) MR0264984DOI10.1287/opre.18.1.107
- A. V. Fiacco, 10.1007/BF00935606, Journal of Optimization Theory and Applications 13 (1974), 1-12. (1974) Zbl0255.90047MR0334946DOI10.1007/BF00935606
- J. Gauvin J. W. Tolle, 10.1137/0315020, SlAM Journal on Control and Optimization 15 (1977), 294-311. (1977) MR0441352DOI10.1137/0315020
- H. J. Greenberg W. P. Pierskalla, 10.1287/opre.20.1.143, Operations Research 20 (1972), 143-153. (1972) MR0316101DOI10.1287/opre.20.1.143
- J. Guddat, 10.1080/02331887608801291, Mathematische Operationsforschung und Statistik 7 (1976), 223 - 245. (1976) MR0408827DOI10.1080/02331887608801291
- W. Krabs, Stetige Abänderung der Daten bei nichtlinearer Optimierung und ihre Konsequenzen, Operations Research Verfahren XXV 1 (1977), 93-113. (1977) Zbl0401.90094
- B. Kummer, Global stability of optimization problems, Mathematische Operationsforschung und Statistik, series Optimization (1977). (1977) Zbl0376.90083MR0478618
- O. Mangasarian, Nonlinear Programmirg, McGraw-Hill, New York, 1969. (1969) MR0252038
- D. H. Martin, 10.1007/BF00933875, Journal of Optimization Theory and Applications 17 (1975), 205-210. (1975) Zbl0298.90041MR0386676DOI10.1007/BF00933875
- V. D. Mazurov, The solution of an ill-posed linear optimization problem under contradictory conditions, Supplement to Ekonomika i Matematičeskii Metody, Collection No. 3 (1972), 17-23. (In Russian.) (1972) MR0391950
- M. Z. Nashed (editor), Generalized Inverses and Applications, Academic Press, New York, 1976. (1976)
- F. Nožička J. Guddat H. Hollatz B. Bank, Theorie der linearen parametrische Optimierung, Akademie - Verlag, Berlin, 1974. (1974)
- M. S. A. Osman, Qualitative analysis of basic notions in parametric convex programming, I, Aplikace Matematiky 22 (1977), 318-332. (1977) Zbl0383.90097MR0449692
- M. S. A. Osman, Qualitative analysis of basic notions in parametric convex programming, II, Aplikace Matematiky 22 (1977), 333-348. (1977) Zbl0383.90098MR0449693
- S. M. Robinson, A characterization of stability in linear programming, MRC Technical Report 1542, University of Wisconsin, Madison (1975). (1975)
- T. R. Rockafellar, Convex Analysis, Princeton University Press, 1970. (1970) Zbl0193.18401MR0274683
- A. N. Tihonov V. Y. Arsenin, Solutions of Ill-Posed Problems, Winston, Washington D. C., 1977. (1977) MR0455365
- A. C. Williams, 10.1137/0111006, Journal of the Society of Industrial and Applied Mathematics 11 (1963), 82-94. (1963) Zbl0115.38102MR0184725DOI10.1137/0111006
- H. Wolkowicz, 10.1007/BF00932906, Journal of Optimization Theory and Applications 25 (1978), 451-457. (1978) MR0525723DOI10.1007/BF00932906
- S. Zlobec, Marginal values for arbitrarily perturbed convex programs, Glasnik Matematički (1982, forthcoming). (1982) MR0658001
- S. Zlobec A. Ben-Israel, Perturbed convex programs: continuity of optimal solutions and optimal values, Operations Research Verfahren XXXI 1 (1979), 737-749. (1979)
- S. Zlobec A. Ben-Israel, 10.1080/02331937908842560, Mathematische Operationsforschung und Statistik, series Optimization 10 (1979), 171 - 178. (1979) MR0548525DOI10.1080/02331937908842560
- S. Zlobec B. Craven, 10.1080/02331938108842721, Mathematische Operationsforschung und Statistik, series Optimization 12 (1981), 203-220, (1981) MR0619646DOI10.1080/02331938108842721
- S. Zlobec R. Gardner A. Ben-Israel, Regions of stability for arbitrarily perturbed convex programs, In Mathematical Programming with Data Perturbations I (A. V. Fiacco, ed.), M. Dekker, New York, 1982, 69-89. (1982) MR0652938
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.