An energy analysis of degenerate hyperbolic partial differential equations.
Aplikace matematiky (1984)
- Volume: 29, Issue: 5, page 350-366
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLayton, William J.. "An energy analysis of degenerate hyperbolic partial differential equations.." Aplikace matematiky 29.5 (1984): 350-366. <http://eudml.org/doc/15366>.
@article{Layton1984,
abstract = {An energy analysis is carried out for the usual semidiscrete Galerkin method for the semilinear equation in the region$\Omega $
(E) $(tu_t)_t=\sum _\{i,j=1\}(a_\{ij\}(x)u_\{x_i\})_\{x_j\} - \{a_0(x)u+f(u)\}$, subject to the initial and boundary conditions, $u=0$ on $\partial \Omega $ and $u(x,0)=u_0$. (E) is degenerate at $t=0$ and thus, even in the case $f\equiv 0$, time derivatives of $u$ will blow up as $t\rightarrow 0$. Also, in the case where $f$ is locally Lipschitz, solutions of (E) can blow up for $t>0$ in finite time.
Stability and convergence of the scheme in $W^\{2,1\}$ is shown in the linear case without assuming $u_\{tt\}$ (which can blow up as $t\rightarrow 0$ is smooth. Convergence of the approximation to $u$ is shown in the case where $f$ is nonlinear and locally Lipschitz. The convergence occurs in regions where $u(x,t)$ exists and is smooth. Rates of convergence are given.},
author = {Layton, William J.},
journal = {Aplikace matematiky},
keywords = {degenerate equation; Lipschitz; energy analysis; semi-discrete Galerkin method; semilinear equation; stability; convergence; degenerate equation; Lipschitz; energy analysis; semi-discrete Galerkin method; semilinear equation; Stability; convergence},
language = {eng},
number = {5},
pages = {350-366},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An energy analysis of degenerate hyperbolic partial differential equations.},
url = {http://eudml.org/doc/15366},
volume = {29},
year = {1984},
}
TY - JOUR
AU - Layton, William J.
TI - An energy analysis of degenerate hyperbolic partial differential equations.
JO - Aplikace matematiky
PY - 1984
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 29
IS - 5
SP - 350
EP - 366
AB - An energy analysis is carried out for the usual semidiscrete Galerkin method for the semilinear equation in the region$\Omega $
(E) $(tu_t)_t=\sum _{i,j=1}(a_{ij}(x)u_{x_i})_{x_j} - {a_0(x)u+f(u)}$, subject to the initial and boundary conditions, $u=0$ on $\partial \Omega $ and $u(x,0)=u_0$. (E) is degenerate at $t=0$ and thus, even in the case $f\equiv 0$, time derivatives of $u$ will blow up as $t\rightarrow 0$. Also, in the case where $f$ is locally Lipschitz, solutions of (E) can blow up for $t>0$ in finite time.
Stability and convergence of the scheme in $W^{2,1}$ is shown in the linear case without assuming $u_{tt}$ (which can blow up as $t\rightarrow 0$ is smooth. Convergence of the approximation to $u$ is shown in the case where $f$ is nonlinear and locally Lipschitz. The convergence occurs in regions where $u(x,t)$ exists and is smooth. Rates of convergence are given.
LA - eng
KW - degenerate equation; Lipschitz; energy analysis; semi-discrete Galerkin method; semilinear equation; stability; convergence; degenerate equation; Lipschitz; energy analysis; semi-discrete Galerkin method; semilinear equation; Stability; convergence
UR - http://eudml.org/doc/15366
ER -
References
top- W. F. Ames, Nonlinear Partial Differential in Engineering, Academic Press, New York, 1965. (1965) MR0210342
- J. P. Aubin, Applied Functional Analysis, Wiley-Interscience, New York, 1979. (1979) Zbl0424.46001MR0549483
- I. Babuska A. K. Aziz, Survey Lectures on the Mathematical Foundations of the Finite Element Method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. A. K. Aziz (Editor). Academic Press, New York, 1972. (1972) MR0421106
- G. Baker, 10.1137/0713048, SIAM J. Numer. Anal., v. 13 (1976), pp. 564-576. (1976) MR0423836DOI10.1137/0713048
- G. Baker V. Dougalis, On the -Convergence of Galerkin approximations for second-order hyperbolic equations, Math. Соmр., v. 34 (1980), pp. 401-424. (1980) MR0559193
- M. L. Bernardi, 10.1007/BF01761498, Ann. Math. Рurа Appl., v. 80 (1982), pp. 257-286. (1982) MR0663974DOI10.1007/BF01761498
- J. H. Bramble A. H. Schatz V. Thomée L. Wahlbin, 10.1137/0714015, SIAM J. Numer. Anal., v. 14 (1977), pp. 218-241. (1977) MR0448926DOI10.1137/0714015
- B. Cahlon, On the initial value problem for a certain partial differential equation, B. I. T., v. 19 (1979), pp. 164-171. (1979) Zbl0411.65052MR0537776
- R. W. Carroll R. E. Showalter, Singular and Degenerate Cauchy Problems, Academic Press, New York, 1976. (1976) MR0460842
- R. Courant D. Hilbert, Methods of Mathematical Physics, volume 1, Irterscience Publishers, New York.
- J. Douglas, Jr. T. Dupont, 10.1137/0707048, SIAM J. Numer. Anal. v. 7 (1970), pp. 575-626. (1970) MR0277126DOI10.1137/0707048
- J. Douglas, Jr. T. Dupont L. Wahlbin, Optimal error estimates for Galerkin approximations to two-point boundary value problems, Math. Соmр., v. 29 (1975), pp. 475 - 483. (1975) MR0371077
- T. Dupont, 10.1137/0710073, SlAM J. Numer. Anal., v. 10 (1973), pp. 880-889. (1973) MR0349045DOI10.1137/0710073
- A. Erdélyi W. Magnus F. Oberhettinger F. G. Tricomi, Higher Transcendental Functions, Volume 3. McGraw-Hill, New York, 1953. (1953) MR0058756
- G. Fix N. Nassif, 10.1007/BF01402523, Numer. Math., v. 19 (1972), pp. 127-135. (1972) MR0311122DOI10.1007/BF01402523
- J. Frehse R. Rannacher, 10.1137/0715026, SIAM J. Numer. Anal., v. 15 (1978), pp. 418-431. (1978) MR0502037DOI10.1137/0715026
- A. Friedman Z. Schuss, 10.1090/S0002-9947-1971-0283623-9, Trans. Amer. Math. Soc., v. 161 (1971), pp. 401-427. (1971) MR0283623DOI10.1090/S0002-9947-1971-0283623-9
- A. Genis, On finite element methods for the Euler-Poisson-Darboux equation, SIAM J. Numer. Anal., to appear. Zbl0576.65112MR0765508
- D. Gilbarg N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. (1977) MR0473443
- W. Layton, The finite element method for a degenerate hyperbolic partial differential equation, B.I.T. Zbl0518.65066
- W. Layton, Some effects of numerical integration in finite element approximations to degenerate evolution equations, Calcolo, to appear. MR0799613
- H. A. Levine, 10.1016/0022-247X(74)90137-1, J. Math. Anal. and Appl., v. 48 (1974), pp. 646-651. (1974) Zbl0291.35063MR0352732DOI10.1016/0022-247X(74)90137-1
- J. A. Nitsche, -convergence for finite element approximation, Second Conference on Finite Elements. Rennes, France, May 12-14, 1975. (1975) MR0568857
- J. A. Nitsche, On -convergence of finite element approximation to the solution of a nonlinear boundary value problem, Topics in Numerical Analysis III, Proc. Roy. Irish Acad. Conf. on Numerical Analysis 1976, J. J. H. Miller (Editor). Academic Press, London, 1977. (1976) MR0513215
- M. Povoas, On a second order degenerate hyperbolic equation, Boll. Un. Mat. Ital., v. 5, 16A (1979), pp. 349-355. (1979) Zbl0403.35070MR0541773
- M. Reed, Abstract Nonlinear Wave Equations, Sprirger Lecture Notes vol. 507, Springer-Verlag, Berlin, 1970. (1970)
- R. Scott, Optimal -estimates for the finite element method on irregular meshes, Math. Соmр., v. 30 (1976), pp. 681-697. (1976) MR0436617
- V. Thomée L. Wahlbin, 10.1137/0712030, SIAM J. Numer. Anal., v. 12 (1975), pp. 378-389. (1975) MR0395269DOI10.1137/0712030
- A. Weinstein, Singular partial differential equations and their applications, pp. 29-49 in Proc. Symp. Fluid Dyn. Appl. Mat. Gordon-Breach, New York, 1962. (1962) Zbl0142.07303MR0153965
- M. Zlámal, The mixed boundary value problem for a hyperbolic equation with a small parameter, Czechoslovak Math. J., v. 10 (1960), pp. 83-122. (1960)
- M. Zlámal, 10.1007/BF02417732, Ann. Mat. Рurа Appl., v. 57 (1962), pp. 143-150. (1962) MR0138891DOI10.1007/BF02417732
- M. Zlámal, Finite element multistep discretizations of parabolic boundary value problems, Math. Соmр., v. 29 (1975), pp. 350-359. (1975) MR0371105
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.