Approximations of parabolic variational inequalities
Aplikace matematiky (1985)
- Volume: 30, Issue: 1, page 11-35
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topŽeníšek, Alexander. "Approximations of parabolic variational inequalities." Aplikace matematiky 30.1 (1985): 11-35. <http://eudml.org/doc/15382>.
@article{Ženíšek1985,
abstract = {The paper deals with an initial problem of a parabolic variational inequality whichcontains a nonlinear elliptic form $a(v,w)$ having a potential $J(v)$, which is twice $G$-differentiable at arbitrary $v\in H^1(\Omega )$. This property of $a(v,w)$ makes it possible to prove convergence of an approximate solution defined by a linearized scheme which is fully discretized - in space by the finite elements method and in time by a one-step finite-difference method. Strong convergence of the approximate solution is proved without any regularity assumptions on the exact solution. An error bound is also derived under the assumption that the exact solution is sufficiently smooth.},
author = {Ženíšek, Alexander},
journal = {Aplikace matematiky},
keywords = {parabolic variational inequalities; one-step finite difference method; finite element method; convergence; error bound; parabolic variational inequalities; one-step finite difference method; finite element method; convergence; error bound},
language = {eng},
number = {1},
pages = {11-35},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Approximations of parabolic variational inequalities},
url = {http://eudml.org/doc/15382},
volume = {30},
year = {1985},
}
TY - JOUR
AU - Ženíšek, Alexander
TI - Approximations of parabolic variational inequalities
JO - Aplikace matematiky
PY - 1985
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 30
IS - 1
SP - 11
EP - 35
AB - The paper deals with an initial problem of a parabolic variational inequality whichcontains a nonlinear elliptic form $a(v,w)$ having a potential $J(v)$, which is twice $G$-differentiable at arbitrary $v\in H^1(\Omega )$. This property of $a(v,w)$ makes it possible to prove convergence of an approximate solution defined by a linearized scheme which is fully discretized - in space by the finite elements method and in time by a one-step finite-difference method. Strong convergence of the approximate solution is proved without any regularity assumptions on the exact solution. An error bound is also derived under the assumption that the exact solution is sufficiently smooth.
LA - eng
KW - parabolic variational inequalities; one-step finite difference method; finite element method; convergence; error bound; parabolic variational inequalities; one-step finite difference method; finite element method; convergence; error bound
UR - http://eudml.org/doc/15382
ER -
References
top- I. Bock J. Kačur, Application of Rothe's method to parabolic variational inequalities, Math. Slovaca 31 (1981), 429-436. (1981) MR0637970
- J. Céa, Optimization, Dunod, Paris 1971. (1971) Zbl0231.94026MR0298892
- P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam 1978. (1978) Zbl0383.65058MR0520174
- H. Gajewski K. Gröger K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin 1974. (1974) MR0636412
- J. Haslinger, Finite element analysis for unilateral problems with obstacles on the boundary, Apl. mat. 22 (1977), 180-188. (1977) Zbl0434.65083MR0440956
- I. Hlaváček J. Haslinger J. Nečas J. Lovíšek, Solving Yariational Inequalities in Mechanics, Alfa-SNTL, Bratislava-Prague, 1982. (In Slovak.) (1982) MR0755152
- V. Jarník, Integral Calculus II, Nakladatelství ČSAV, Prague 1955. (In Czech.) (1955)
- C. Johnson, 10.1137/0713050, SIAM J. Numer. Anal. 13 (1976), 599-606. (1976) Zbl0337.65055MR0483545DOI10.1137/0713050
- J. Kačur, On an approximate solution of variational inequalities, (To appear in Math. Nachr.) MR0809346
- A. Kufner O. John S. Fučík, Function Spaces, Academia, Prague 1977. (1977) MR0482102
- J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Lirnites Non Linéaires, Dunod and Gauthier - Villars, Paris 1969. (1969) MR0259693
- J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Prague 1967. (1967) MR0227584
- A. Ženíšek M. Zlámal, 10.1002/nme.1620020302, Int. J. Numer. Meth. Engng. 2 (1970), 307-310. (1970) MR0284016DOI10.1002/nme.1620020302
- M. Zlámal, 10.1137/0710022, SIAM J. Numer. Anal. 30 (1973), 229-240. (1973) MR0395263DOI10.1137/0710022
- M. Zlámal, Finite element solution of quasistationary nonlinear magnetic field, R.A.I.R.O. Anal. Numer. 16 (1982), 161-191. (1982) MR0661454
- M. Zlámal, A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields, Math. Соmр. 41 (1983), 425-440. (1983) MR0717694
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.