Finite element solution of quasistationary nonlinear magnetic field
- Volume: 16, Issue: 2, page 161-191
- ISSN: 0764-583X
Access Full Article
topHow to cite
topZlamal, Miloš. "Finite element solution of quasistationary nonlinear magnetic field." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.2 (1982): 161-191. <http://eudml.org/doc/193396>.
@article{Zlamal1982,
author = {Zlamal, Miloš},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {quasistationary nonlinear two-dimensional magnetic field; magnetic vector potential; generalized Galerkin method; finite elements; backward A- stable differentiation methods; weak solution; error bounds},
language = {eng},
number = {2},
pages = {161-191},
publisher = {Dunod},
title = {Finite element solution of quasistationary nonlinear magnetic field},
url = {http://eudml.org/doc/193396},
volume = {16},
year = {1982},
}
TY - JOUR
AU - Zlamal, Miloš
TI - Finite element solution of quasistationary nonlinear magnetic field
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 2
SP - 161
EP - 191
LA - eng
KW - quasistationary nonlinear two-dimensional magnetic field; magnetic vector potential; generalized Galerkin method; finite elements; backward A- stable differentiation methods; weak solution; error bounds
UR - http://eudml.org/doc/193396
ER -
References
top- [1] J. CÉA, Optimization, Dunod, Paris, 1971 MR298892
- [2] P. G. CIARLET, The finite element method for elliptic problems North-Holland, Amsterdam-New-York-Oxford, 1978. Zbl0383.65058MR520174
- [3] Ph. CLEMENT, Approximation by finite element function using local regularisation. R.A.I.O. Anal. Num., 9e année, 1975, pp. 77-84. Zbl0368.65008MR400739
- [4] H. GAJEWSKI, K. GRÖGER and K. ZACHARIAS, Nichtlineare Operatorgleichungen und Operatordifferentialgletchungen. Akademie-Verlag, Berlin, 1974. Zbl0289.47029MR636412
- [5] O. A. LADYZENSKAJA and L. STUPJALIS, Ob uravnenijach smesannogo tipa. Vestnik Leningradskogo Universiteta, n° 19, 1965, pp. 38-47. MR212403
- [6] J. D. LAMBERT, Computational methods in ordinary differential equations. Wiley, London, 1972. Zbl0258.65069MR423815
- [7] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod and Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
- [8] F. MELKES and M. ZLAMAL, Numerical solution of nonlinear quasistationary magnetic fields To be published. Zbl0513.65074
- [9] J. NECAS, Les méthodes directes en théorie des équations elliptiques Academia, Prague, 1967. MR227584
- [10] J. M. ORTEGA and W. C. RHEINBOLDT, Iterative solution of nonlinear equations inseveral variables. Academic Press, New York and London, 1970. Zbl0241.65046MR273810
- [11] P. A. RAVIART, Sur la résolution et l'approximation de certaines équations paraboliques non linéaires dégénérées. Arch. Rat. Mech. Anal., vol. 25. 1967, pp. 64-80. Zbl0153.42202MR215544
- [12] P. A. RAVIART, Sur la résolution de certaines équations paraboliques non linéaires J. Func. Anal., vol. 5, 1970, pp. 299-328. Zbl0199.42401MR257585
- [13] T. TEMAM, Navier-Stokes equations. North-Holland, Amsterdam, 1977. Zbl0383.35057
- [14] M. ZLAMAL, Finite element methods for nonlinear parabolic equations. R.A.I.R.O. Anal. Num., vol. 11, 1977, pp. 93-107. Zbl0385.65049MR502073
Citations in EuDML Documents
top- Alexander Ženíšek, The existence and uniqueness theorem in Biot's consolidation theory
- Alexander Ženíšek, Approximations of parabolic variational inequalities
- Dana Říhová-Škabrahová, Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition
- Dana Říhová-Škabrahová, A note to Friedrichs' inequality
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.