Regions of stability for ill-posed convex programs: An addendum
Aplikace matematiky (1986)
- Volume: 31, Issue: 2, page 109-117
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topReferences
top- I. I. Eremin N. N. Astafiev, Introduction to the Theory of Linear and Convex Programming, Nauka, Moscow, 1976. (In Russian.) (1976) MR0475825
- V. G. Karmanov, Mathematical Programming, Nauka, Moscow, 1975. (In Russian.) (1975) Zbl0349.90075MR0411559
- J. Semple S. Zlobec, Continuity of the Lagrangian multiplier function in input optimization, Mathematical Programming, (forthcoming).
- L. I. Trudzik, Optimization in Abstract Spaces, Ph. D. Thesis, University of Melbourne, 1983. (1983)
- S. Zlobec, Regions of stability for ill-posed convex programs, Aplikace Matematiky, 27 (1982), 176-191. (1982) Zbl0482.90073MR0658001
- S. Zlobec, 10.1007/BF02591721, Mathematical Programming, 25 (1983), 109-121. (1983) Zbl0505.90077MR0679256DOI10.1007/BF02591721
- S. Zlobec, Characterizing an optimal input in perturbed convex programming: An addendum, (In preparation.)
- S. Zlobec, 10.1007/BF02591948, Mathematical Programming 31 (1985). (1985) Zbl0589.90068MR0783391DOI10.1007/BF02591948
- S. Zlobec, Input optimization: II. A numerical method, (In preparation.)
- S. Zlobec A. Ben-Israel, Perturbed convex programming: Continuity of optimal solutions and optimal values, Operations Research Verfahren XXXI (1979), 737-749. (1979) MR0548525
- S. Zlobec R. Gardner A. Ben-Israel, Regions of stability for arbitrarily perturbed convex programs, in: Mathematical Programming with Data Perturbations I (A. Fiacco, editor), M. Dekker, New York (1982), 69-89. (1982) MR0652938