Stability analysis of reducible quadrature methods for Volterra integro-differential equations

Vernon L. Bakke; Zdzisław Jackiewicz

Aplikace matematiky (1987)

  • Volume: 32, Issue: 1, page 37-48
  • ISSN: 0862-7940

Abstract

top
Stability analysis for numerical solutions of Voltera integro-differential equations based on linear multistep methods combined with reducible quadrature rules is presented. The results given are based on the test equation y ' ( t ) = γ y ( t ) + 0 t ( λ + μ t + v s ) y ( s ) d s and absolute stability is deffined in terms of the real parameters γ , λ , μ and v . Sufficient conditions are illustrated for ( 0 ; 0 ) - methods and for combinations of Adams-Moulton and backward differentiation methods.

How to cite

top

Bakke, Vernon L., and Jackiewicz, Zdzisław. "Stability analysis of reducible quadrature methods for Volterra integro-differential equations." Aplikace matematiky 32.1 (1987): 37-48. <http://eudml.org/doc/15478>.

@article{Bakke1987,
abstract = {Stability analysis for numerical solutions of Voltera integro-differential equations based on linear multistep methods combined with reducible quadrature rules is presented. The results given are based on the test equation $y^\{\prime \}(t)=\gamma y(t) + \int ^t_0(\lambda + \mu t + vs) y(s) ds$ and absolute stability is deffined in terms of the real parameters $\gamma , \lambda , \mu $ and $v$. Sufficient conditions are illustrated for $(0;0)$ - methods and for combinations of Adams-Moulton and backward differentiation methods.},
author = {Bakke, Vernon L., Jackiewicz, Zdzisław},
journal = {Aplikace matematiky},
keywords = {backward-differentiation-formula method; Volterra integro-differential equations; theta method; test equation; stability; linear multistep methods; reducible quadrature formulas; linear difference equation; Adams-Moulton methods; stability of numerical solution; backward-differentiation-formula method; Volterra integro-differential equations; theta method; test equation; stability; linear multistep methods; reducible quadrature formulas; linear difference equation; Adams-Moulton methods},
language = {eng},
number = {1},
pages = {37-48},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability analysis of reducible quadrature methods for Volterra integro-differential equations},
url = {http://eudml.org/doc/15478},
volume = {32},
year = {1987},
}

TY - JOUR
AU - Bakke, Vernon L.
AU - Jackiewicz, Zdzisław
TI - Stability analysis of reducible quadrature methods for Volterra integro-differential equations
JO - Aplikace matematiky
PY - 1987
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 1
SP - 37
EP - 48
AB - Stability analysis for numerical solutions of Voltera integro-differential equations based on linear multistep methods combined with reducible quadrature rules is presented. The results given are based on the test equation $y^{\prime }(t)=\gamma y(t) + \int ^t_0(\lambda + \mu t + vs) y(s) ds$ and absolute stability is deffined in terms of the real parameters $\gamma , \lambda , \mu $ and $v$. Sufficient conditions are illustrated for $(0;0)$ - methods and for combinations of Adams-Moulton and backward differentiation methods.
LA - eng
KW - backward-differentiation-formula method; Volterra integro-differential equations; theta method; test equation; stability; linear multistep methods; reducible quadrature formulas; linear difference equation; Adams-Moulton methods; stability of numerical solution; backward-differentiation-formula method; Volterra integro-differential equations; theta method; test equation; stability; linear multistep methods; reducible quadrature formulas; linear difference equation; Adams-Moulton methods
UR - http://eudml.org/doc/15478
ER -

References

top
  1. С. T. H. Baker A. Makroglou E. Short, Regions of stability in the numerical treatment of Volterra integro-differential equations, SIAM J. Numer. Anal., Vol. 16, No. 6, December, 1979. (1979) MR0551314
  2. V. L. Bakke Z. Jackiewicz, 10.1007/BF01389707, Numer. Math. 47 (1985), 159-173. (1985) MR0799682DOI10.1007/BF01389707
  3. V. L. Bakke Z. Jackiewicz, 10.1016/0022-247X(86)90018-1, J. Math. Anal. Appl., 115 (1986), 592-605. (1986) MR0836249DOI10.1016/0022-247X(86)90018-1
  4. H. Brunner, A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations, J. Comput. App. Math., Vol. 8, No. 3, 1982. (1982) Zbl0485.65087MR0682889
  5. H. Brunner J. D. Lambert, 10.1007/BF02239501, Computing 12, 75-89 (1974). (1974) MR0418490DOI10.1007/BF02239501
  6. C. J. Gladwin R. Jeltsch, 10.1007/BF01932943, BIT 14, 144-151 (1974). (1974) MR0502108DOI10.1007/BF01932943
  7. P. Linz, 10.1145/321510.321521, J. Assoc. Comput. Mach., 16 (1969), 295-301. (1969) Zbl0183.45002MR0239786DOI10.1145/321510.321521
  8. J. Matthys, 10.1007/BF01399087, Numer. Math. 27, 85-94 (1976). (1976) Zbl0319.65072MR0436638DOI10.1007/BF01399087
  9. D. Sanchez, A short note on asymptotic estimates of stability regions for a certain class of Volterra integro-differential equations, Manuscript, Department of Mathematics and Statistics, University of New Mexico, May, 1984. (1984) 
  10. L. M. Milne-Thompson, The calculus of finite differences, MacMillan& Co., London, 1933. (1933) 
  11. P. H. M. Wolkenfelt, 10.1093/imanum/2.2.131, IMA Journal of Numerical Analysis, 2, 131-152 (1982). (1982) Zbl0481.65084MR0668589DOI10.1093/imanum/2.2.131
  12. P. H. M. Wolkenfelt, 10.1002/zamm.19810610808, Z. Angew. Math. Mech., 61, 399-401 (1981). (1981) Zbl0466.65073MR0638029DOI10.1002/zamm.19810610808

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.