An algorithm for biparabolic spline
Aplikace matematiky (1987)
- Volume: 32, Issue: 5, page 401-413
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKobza, Jiří. "An algorithm for biparabolic spline." Aplikace matematiky 32.5 (1987): 401-413. <http://eudml.org/doc/15510>.
@article{Kobza1987,
abstract = {The paper deals with the computation of suitably chosen parameters of a biparabolic spline (ot the tensor product type) on a rectangular domain. Some possibilities of choosing such local parameters (concentrated, dispersed parameters) are discussed. The algorithms for computation of dispersed parameters (using the first derivative representation) and concentraced parameters (using the second derivative representation) are given. Both these algorithms repeatedly use the one-dimensional algorithms.},
author = {Kobza, Jiří},
journal = {Aplikace matematiky},
keywords = {surface approximations; two-dimensional parabolic interpolation spline; interpolation biparabolic spline; local parameters; parabolic spline algorithms; surface approximations; two-dimensional parabolic interpolation spline; interpolation biparabolic spline; local parameters; parabolic spline algorithms},
language = {eng},
number = {5},
pages = {401-413},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An algorithm for biparabolic spline},
url = {http://eudml.org/doc/15510},
volume = {32},
year = {1987},
}
TY - JOUR
AU - Kobza, Jiří
TI - An algorithm for biparabolic spline
JO - Aplikace matematiky
PY - 1987
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 5
SP - 401
EP - 413
AB - The paper deals with the computation of suitably chosen parameters of a biparabolic spline (ot the tensor product type) on a rectangular domain. Some possibilities of choosing such local parameters (concentrated, dispersed parameters) are discussed. The algorithms for computation of dispersed parameters (using the first derivative representation) and concentraced parameters (using the second derivative representation) are given. Both these algorithms repeatedly use the one-dimensional algorithms.
LA - eng
KW - surface approximations; two-dimensional parabolic interpolation spline; interpolation biparabolic spline; local parameters; parabolic spline algorithms; surface approximations; two-dimensional parabolic interpolation spline; interpolation biparabolic spline; local parameters; parabolic spline algorithms
UR - http://eudml.org/doc/15510
ER -
References
top- C. de Boor, A practical guide to splines, Springer, N. Y. 1978. (1978) Zbl0406.41003MR0507062
- J. Kobza, On algorithms for parabolic splines, Acta UPO, FRN, Vol. 88, Math. XXVI (to appear) Zbl0693.65005MR1033338
- J. Kobza, Evaluation and mapping of parabolic interpolating spline, (Czech). Knižnica algoritmov, IX. diel, str. 51-58; JSMF Bratislava 1987. (1987)
- В. Л. Макаров В. В. Хлобыстов, Сплайн-аппроксимация функций, Москва, Наука 1983. (1983) Zbl1229.47001
- С. Б. Стечкин И. H. Субботин, Сплайны в вычислительной математике, Москва, Наука 1976. (1976) Zbl1226.05083
- M. Schultz, Spline analysis, Prentice-Hall, N. J. 1973. (1973) Zbl0333.41009MR0362832
- Ю. С. Завялое Б. И. Квасов В. Л. Мирошниченко, Методы сплайн-функций, Москва, Наука 1980. (1980) Zbl1229.60003
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.