Some properties of interpolating quadratic spline

Jiří Kobza

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1990)

  • Volume: 29, Issue: 1, page 45-64
  • ISSN: 0231-9721

How to cite

top

Kobza, Jiří. "Some properties of interpolating quadratic spline." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 29.1 (1990): 45-64. <http://eudml.org/doc/23522>.

@article{Kobza1990,
author = {Kobza, Jiří},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {interpolating quadratic splines; example},
language = {eng},
number = {1},
pages = {45-64},
publisher = {Palacký University Olomouc},
title = {Some properties of interpolating quadratic spline},
url = {http://eudml.org/doc/23522},
volume = {29},
year = {1990},
}

TY - JOUR
AU - Kobza, Jiří
TI - Some properties of interpolating quadratic spline
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 1990
PB - Palacký University Olomouc
VL - 29
IS - 1
SP - 45
EP - 64
LA - eng
KW - interpolating quadratic splines; example
UR - http://eudml.org/doc/23522
ER -

References

top
  1. Ahlberg J.H., Nilson E.N., Walsh J.L., The Theory of Splines and Their Applications, Acad. Press 1967. (1967) Zbl0158.15901MR0239327
  2. de Boor C., A Practical Guide to Splines, Springer, 1978. (1978) Zbl0406.41003MR0507062
  3. Fiedler M., Speciální matice a jejich použití v numerické matematice, SNTL Praha, 1981. (1981) Zbl0531.65008
  4. Kammerer W.J., Reddien G.W., Varga L.S., Quadratic interpolatory splines, Numer. Mathematik 22 (1974), 241-259. (1974) Zbl0271.65006MR0381235
  5. Kobza J., On algorithms for parabolic splines, Acta UPO, FRN, Vol. 88, Math. XXVI, pp.169-185. Zbl0693.65005MR1033338
  6. Kobza J., An algorithm for biparabolic spline, Aplikace matematiky, 32 (1987), 401-413. (1987) Zbl0635.65006MR0909546
  7. Kobza J., Evaluation and mapping of parabolic interpolating spline, Knižnica algoritmov, IX.diel, 51-58; JSMF Bratislava 1987. (1987) 
  8. Kobza J., Natural and smoothing quadratic spline, To appear in Aplikace matematiky. Zbl0731.65006
  9. Laurent P.J., Approximation et Optimization, Hermann, Paris 1972. (1972) MR0467080
  10. Maess B., Maess G., Interpolating quadratic splines with norm-minimal curvature, Rostock. Math. Kolloq. 26 (1984), 83-88. (1984) Zbl0551.65003MR0778184
  11. Maess G., Smooth interpolation of curves and surfaces by quadratic splines with minim al curvature, Numerical Methods and Applications ’84, Sofia 1985, 75-81. (1985) 
  12. Marsden M.J., Quadratic spline interpolation, Bull.AMS, 80 (1974), 903-906. (1974) Zbl0295.41005MR0358154
  13. McAllister D.F., Passow E., Roulier J.A., Algorithms for computing shape preserving spline interpolation to data, Mathematics of Computations, 31 (1977), 717-725. (1977) MR0448805
  14. McAllister D.F., Roulier J.A., An algorithm for computing a shape-preserving oscilatory quadratic spline, ACM Trans. Math. Software 7 (1981), 331-347, 384-386 (Alg.574). (1981) MR0630439
  15. Passow E., Monotone quadratic spline, Journal Approx.Theory 19 (1977), 143-147. (1977) Zbl0361.41005MR0440246
  16. Schumaker L., On shape preserving quadratic spline interpolation, SIAM J. Num. Anal. 20 (1983), 854-864. (1983) Zbl0521.65009MR0708462
  17. Стечкин C. B., Сыбботин Ю. H., Сплейны в вычислительной математике, Hayкa, Mocква 1976. (1976) Zbl1226.05083
  18. Завьялов Ю. C., Квасов B. И., Мирошниченко B. Л., Методы сплейн функций, Hayкa, Mocква 1980. (1980) Zbl1229.60003
  19. Завьялов Ю. C., Леус В. А., Cкороспелов B. A., Сплейны в инженерной геометрии, Машиностроение, Mocква 1985. (1985) Zbl1223.81144

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.