Bayes unbiased estimators of parameters of linear trend with autoregressive errors
Aplikace matematiky (1987)
- Volume: 32, Issue: 6, page 451-458
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topŠtulajter, František. "Bayes unbiased estimators of parameters of linear trend with autoregressive errors." Aplikace matematiky 32.6 (1987): 451-458. <http://eudml.org/doc/15515>.
@article{Štulajter1987,
abstract = {The method of least wquares is usually used in a linear regression model $\mathbf \{Y=X\beta +\epsilon \}$ for estimating unknown parameters $\mathbf \{\beta \}$. The case when $\epsilon $ is an autoregressive process of the first order and the matrix $\mathbf \{X\}$ corresponds to a linear trend is studied and the Bayes approach is used for estimating the parameters $\mathbf \{\beta \}$. Unbiased Bayes estimators are derived for the case of a small number of observations. These estimators are compared with the locally best unbiased ones and with the usual least squares estimators.},
author = {Štulajter, František},
journal = {Aplikace matematiky},
keywords = {autoregressive process of first order; linear trend; Unbiased Bayes estimators; locally best unbiased; least squares estimators; autoregressive process of first order; linear trend; Unbiased Bayes estimators; locally best unbiased; least squares estimators},
language = {eng},
number = {6},
pages = {451-458},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bayes unbiased estimators of parameters of linear trend with autoregressive errors},
url = {http://eudml.org/doc/15515},
volume = {32},
year = {1987},
}
TY - JOUR
AU - Štulajter, František
TI - Bayes unbiased estimators of parameters of linear trend with autoregressive errors
JO - Aplikace matematiky
PY - 1987
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 6
SP - 451
EP - 458
AB - The method of least wquares is usually used in a linear regression model $\mathbf {Y=X\beta +\epsilon }$ for estimating unknown parameters $\mathbf {\beta }$. The case when $\epsilon $ is an autoregressive process of the first order and the matrix $\mathbf {X}$ corresponds to a linear trend is studied and the Bayes approach is used for estimating the parameters $\mathbf {\beta }$. Unbiased Bayes estimators are derived for the case of a small number of observations. These estimators are compared with the locally best unbiased ones and with the usual least squares estimators.
LA - eng
KW - autoregressive process of first order; linear trend; Unbiased Bayes estimators; locally best unbiased; least squares estimators; autoregressive process of first order; linear trend; Unbiased Bayes estimators; locally best unbiased; least squares estimators
UR - http://eudml.org/doc/15515
ER -
References
top- J. Anděl, Statistical Analysis of Time series, (Czech) SNTL, Praha 1976. (1976)
- C. R. Rao, Linear Statistical Inference and Its Applications, J. Wiley, N. York 1965. (1965) Zbl0137.36203MR0221616
- A. Zellner, An Introduction to Bayesian Inference in Econometric, J. Wiley, N. York 1971. (1971) MR0433791
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.