A note on direct methods for approximations of sparse Hessian matrices
Aplikace matematiky (1988)
- Volume: 33, Issue: 3, page 171-176
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topTůma, Miroslav. "A note on direct methods for approximations of sparse Hessian matrices." Aplikace matematiky 33.3 (1988): 171-176. <http://eudml.org/doc/15535>.
@article{Tůma1988,
abstract = {Necessity of computing large sparse Hessian matrices gave birth to many methods for their effective approximation by differences of gradients. We adopt the so-called direct methods for this problem that we faced when developing programs for nonlinear optimization. A new approach used in the frame of symmetric sequential coloring is described. Numerical results illustrate the differences between this method and the popular Powell-Toint method.},
author = {Tůma, Miroslav},
journal = {Aplikace matematiky},
keywords = {large sparse optimization; numerical examples; sparse Hessian matrices; finite-differences; graph-coloring; ordering scheme; coloring scheme; large sparse optimization; numerical examples; sparse Hessian matrices; finite-differences; graph-coloring; ordering scheme; coloring scheme},
language = {eng},
number = {3},
pages = {171-176},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on direct methods for approximations of sparse Hessian matrices},
url = {http://eudml.org/doc/15535},
volume = {33},
year = {1988},
}
TY - JOUR
AU - Tůma, Miroslav
TI - A note on direct methods for approximations of sparse Hessian matrices
JO - Aplikace matematiky
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 33
IS - 3
SP - 171
EP - 176
AB - Necessity of computing large sparse Hessian matrices gave birth to many methods for their effective approximation by differences of gradients. We adopt the so-called direct methods for this problem that we faced when developing programs for nonlinear optimization. A new approach used in the frame of symmetric sequential coloring is described. Numerical results illustrate the differences between this method and the popular Powell-Toint method.
LA - eng
KW - large sparse optimization; numerical examples; sparse Hessian matrices; finite-differences; graph-coloring; ordering scheme; coloring scheme; large sparse optimization; numerical examples; sparse Hessian matrices; finite-differences; graph-coloring; ordering scheme; coloring scheme
UR - http://eudml.org/doc/15535
ER -
References
top- T. F. Coleman J. J. Moré, 10.1007/BF02612334, Math. Prog. 28 (1984), 243-270. (1984) MR0736293DOI10.1007/BF02612334
- G. C. Everstine, 10.1002/nme.1620140606, International Journal on Numerical Methods in Engineering 14 (1979), 837-853. (1979) Zbl0401.73082DOI10.1002/nme.1620140606
- A. George J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, Inc. Englewood Cliffs. N. J. 07632, 1981. (1981) MR0646786
- P. Hanzálek J. Hřebíček J. Kučera, 10.1016/0010-4655(86)90080-9, Computer Physics Communications 41 (1986), 403 - 408. (1986) DOI10.1016/0010-4655(86)90080-9
- D. M. Matula L. L. Beck, 10.1145/2402.322385, JACM 30 (1983), 417-427. (1983) MR0709826DOI10.1145/2402.322385
- S. T. McCormick, 10.1007/BF02592052, Math. Prog. 26 (1983), 153-171. (1983) Zbl0507.65027MR0700644DOI10.1007/BF02592052
- M. J. D. Powell, Ph. L. Toint, 10.1137/0716078, SIAM on Num. Anal. 16 (1979), 1060-1074. (1979) Zbl0426.65025MR0551326DOI10.1137/0716078
- M. N. Thapa, Optimization of Unconstrained Functions with Sparse Hessian Matrices: Newton-type Methods, Math. Prog. 19 (1984), 156-186. (1984) Zbl0538.49023MR0745406
- O. C. Zienkiewicz, The Finite Element Method, McGraw Hill, London, 1977. (1977) Zbl0435.73072
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.