A characterization of the approximation order for multivariate spline spaces
Page 1 Next
Amos Ron (1991)
Studia Mathematica
Ladislav Lukšan (1985)
Kybernetika
M. Janc (1982)
Matematički Vesnik
Ferenc Kálovics (1988)
Aplikace matematiky
The paper gives such an iterative method for special Chebyshev approxiamtions that its order of convergence is . Somewhat comparable results are found in [1] and [2], based on another idea.
Jiří Cerha (1996)
Mathematica Bohemica
Shifting a numerically given function we obtain a fundamental matrix of the linear differential system with a constant matrix . Using the fundamental matrix we calculate , calculating the eigenvalues of we obtain and using the least square method we determine .
Vlastimil Pták (1976)
Časopis pro pěstování matematiky
Marc Van Barel, Adhemar Bultheel (1992)
Numerische Mathematik
Miroslav Tůma (1988)
Aplikace matematiky
Necessity of computing large sparse Hessian matrices gave birth to many methods for their effective approximation by differences of gradients. We adopt the so-called direct methods for this problem that we faced when developing programs for nonlinear optimization. A new approach used in the frame of symmetric sequential coloring is described. Numerical results illustrate the differences between this method and the popular Powell-Toint method.
Marc Van Barel, Adhemar Bultheel (1992)
Numerische Mathematik
Karel Segeth (1974)
Acta Universitatis Carolinae. Mathematica et Physica
A. Ziv (1983)
Numerische Mathematik
M. Billaud-Friess, A. Nouy, O. Zahm (2014)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
In this paper, we propose a method for the approximation of the solution of high-dimensional weakly coercive problems formulated in tensor spaces using low-rank approximation formats. The method can be seen as a perturbation of a minimal residual method with a measure of the residual corresponding to the error in a specified solution norm. The residual norm can be designed such that the resulting low-rank approximations are optimal with respect to particular norms of interest, thus allowing to take...
G. Claessens (1977/1978)
Numerische Mathematik
Anna Trzmielak (1977)
Applicationes Mathematicae
E. Neuman (1977)
Applicationes Mathematicae
S.L., McAllister, D.F. Dodd (1985)
Numerische Mathematik
J. Fischer (1982)
Numerische Mathematik
H. Strauß, G. Nürnberger, M. Sommer (1986)
Numerische Mathematik
Vítězslav Veselý (1977)
Kybernetika
J.M. Lambert (1980)
Numerische Mathematik
Page 1 Next