A study of an operator arising in the theory of circular plates

Leopold Herrmann

Aplikace matematiky (1988)

  • Volume: 33, Issue: 5, page 337-353
  • ISSN: 0862-7940

Abstract

top
The operator L 0 : D L 0 H H , L 0 u = 1 r d d r r d d r 1 r d d r r d u d r , D L 0 = { u C 4 ( [ 0 , R ] ) , u ' ( 0 ) = u ' ' ' ' ( 0 ) = 0 , u ( R ) = u ' ( R ) = 0 } , H = L 2 , r ( 0 , R ) is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on L 0 (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types L 0 u = g and u t t + L 0 u = g , respectively.

How to cite

top

Herrmann, Leopold. "A study of an operator arising in the theory of circular plates." Aplikace matematiky 33.5 (1988): 337-353. <http://eudml.org/doc/15548>.

@article{Herrmann1988,
abstract = {The operator $L_0:D_\{L_0\}\subset H \rightarrow H$, $L_0u = \frac\{1\}\{r\} \frac\{d\}\{dr\} \left\lbrace r \frac\{d\}\{dr\}\left[\frac\{1\}\{r\} \frac\{d\}\{dr\}\left(r \frac\{du\}\{dr\}\right)\right] \right\rbrace $, $D_\{L_0\}= \lbrace u \in C^4 ([0,R]), u^\{\prime \}(0)=u^\{\prime \prime \prime \prime \}(0)=0, u(R)=u^\{\prime \}(R)=0\rbrace $, $H=L_\{2,r\}(0,R)$ is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on $L_0$ (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types $L_0u=g$ and $u_\{tt\}+L_0u=g$, respectively.},
author = {Herrmann, Leopold},
journal = {Aplikace matematiky},
keywords = {positive definite; compact resolvent; Fourier method; existence theorems; static; transverse static deflection; transverse vibration; thin homogeneous elastic plate; transverse load; dynamic problems; circular plates theory; positive definite; compact resolvent; Fourier method; existence theorems; static; dynamic problems; transverse static deflection; transverse vibration; thin homogeneous elastic plate; transverse load},
language = {eng},
number = {5},
pages = {337-353},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A study of an operator arising in the theory of circular plates},
url = {http://eudml.org/doc/15548},
volume = {33},
year = {1988},
}

TY - JOUR
AU - Herrmann, Leopold
TI - A study of an operator arising in the theory of circular plates
JO - Aplikace matematiky
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 33
IS - 5
SP - 337
EP - 353
AB - The operator $L_0:D_{L_0}\subset H \rightarrow H$, $L_0u = \frac{1}{r} \frac{d}{dr} \left\lbrace r \frac{d}{dr}\left[\frac{1}{r} \frac{d}{dr}\left(r \frac{du}{dr}\right)\right] \right\rbrace $, $D_{L_0}= \lbrace u \in C^4 ([0,R]), u^{\prime }(0)=u^{\prime \prime \prime \prime }(0)=0, u(R)=u^{\prime }(R)=0\rbrace $, $H=L_{2,r}(0,R)$ is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on $L_0$ (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types $L_0u=g$ and $u_{tt}+L_0u=g$, respectively.
LA - eng
KW - positive definite; compact resolvent; Fourier method; existence theorems; static; transverse static deflection; transverse vibration; thin homogeneous elastic plate; transverse load; dynamic problems; circular plates theory; positive definite; compact resolvent; Fourier method; existence theorems; static; dynamic problems; transverse static deflection; transverse vibration; thin homogeneous elastic plate; transverse load
UR - http://eudml.org/doc/15548
ER -

References

top
  1. R. A. Adams, Sobolev spaces, Academic Press 1975. (1975) Zbl0314.46030MR0450957
  2. B. M. Budak A. A. Samarskii A. N. Tikhonov, A collection of problems on mathematical physics, International series of monographs in pure and applied mathematics 52, Pergamon Press, Oxford 1964. (Russian: Izd. Nauka, Moscow 1980, 3rd ed.). (1964) MR0592954
  3. A. Erdélyi, at., Higher transcendental functions, Vol 2. McGraw Hill 1953. (1953) 
  4. W. G. Faris, Self-adjoint operators, Lecture Notes in Mathematics 433, Springer-Verlag 1975. (1975) Zbl0317.47016MR0467348
  5. P. Hartman, Ordinary differential equations, J. Wiley and Sons 1964. (1964) Zbl0125.32102MR0171038
  6. E. Jahnke F. Emde, Tables of functions, Dover Publ. 1945 (4th ed.). (1945) MR0015900
  7. W. Magnus F. Oberhettinger, Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, Springer-Verlag 1948 (2nd ed.). (1948) MR0025629
  8. D. E. Mc Farland B. L. Smith W. D. Bernhart, Analysis of plates, Spartan Books 1972. (1972) 
  9. S. G. Mikhlin, Linear partial differential equations, (Russian.) Vysš. škola, Moscow 1977. (1977) MR0510535
  10. S. Timoshenko D. H. Young W. Weaver, Jr., Vibrations problems in engineering, John Wiley and Sons 1974 (4th ed.). (Russian: Mashinostrojenije, Moscow 1985.) (1974) 
  11. S. Timoshenko S. Woinowski-Krieger, Theory of plates and shells, McGraw Hill 1959. (1959) 
  12. O. Vejvoda, al., Partial differential equations: time-periodic solutions, Martinus Nijhoff 1982. (1982) Zbl0501.35001
  13. [13J G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press 1958 (2nd ed.). (1958) MR1349110
  14. J. Weidmann, Linear operators in Hilbert spaces, Graduate texts in Mathematics 68, Springer-Verlag 1980. (1980) Zbl0434.47001MR0566954

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.