A study of an operator arising in the theory of circular plates
Aplikace matematiky (1988)
- Volume: 33, Issue: 5, page 337-353
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHerrmann, Leopold. "A study of an operator arising in the theory of circular plates." Aplikace matematiky 33.5 (1988): 337-353. <http://eudml.org/doc/15548>.
@article{Herrmann1988,
abstract = {The operator $L_0:D_\{L_0\}\subset H \rightarrow H$, $L_0u = \frac\{1\}\{r\} \frac\{d\}\{dr\} \left\lbrace r \frac\{d\}\{dr\}\left[\frac\{1\}\{r\} \frac\{d\}\{dr\}\left(r \frac\{du\}\{dr\}\right)\right] \right\rbrace $, $D_\{L_0\}= \lbrace u \in C^4 ([0,R]), u^\{\prime \}(0)=u^\{\prime \prime \prime \prime \}(0)=0, u(R)=u^\{\prime \}(R)=0\rbrace $, $H=L_\{2,r\}(0,R)$ is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on $L_0$ (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types $L_0u=g$ and $u_\{tt\}+L_0u=g$, respectively.},
author = {Herrmann, Leopold},
journal = {Aplikace matematiky},
keywords = {positive definite; compact resolvent; Fourier method; existence theorems; static; transverse static deflection; transverse vibration; thin homogeneous elastic plate; transverse load; dynamic problems; circular plates theory; positive definite; compact resolvent; Fourier method; existence theorems; static; dynamic problems; transverse static deflection; transverse vibration; thin homogeneous elastic plate; transverse load},
language = {eng},
number = {5},
pages = {337-353},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A study of an operator arising in the theory of circular plates},
url = {http://eudml.org/doc/15548},
volume = {33},
year = {1988},
}
TY - JOUR
AU - Herrmann, Leopold
TI - A study of an operator arising in the theory of circular plates
JO - Aplikace matematiky
PY - 1988
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 33
IS - 5
SP - 337
EP - 353
AB - The operator $L_0:D_{L_0}\subset H \rightarrow H$, $L_0u = \frac{1}{r} \frac{d}{dr} \left\lbrace r \frac{d}{dr}\left[\frac{1}{r} \frac{d}{dr}\left(r \frac{du}{dr}\right)\right] \right\rbrace $, $D_{L_0}= \lbrace u \in C^4 ([0,R]), u^{\prime }(0)=u^{\prime \prime \prime \prime }(0)=0, u(R)=u^{\prime }(R)=0\rbrace $, $H=L_{2,r}(0,R)$ is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on $L_0$ (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types $L_0u=g$ and $u_{tt}+L_0u=g$, respectively.
LA - eng
KW - positive definite; compact resolvent; Fourier method; existence theorems; static; transverse static deflection; transverse vibration; thin homogeneous elastic plate; transverse load; dynamic problems; circular plates theory; positive definite; compact resolvent; Fourier method; existence theorems; static; dynamic problems; transverse static deflection; transverse vibration; thin homogeneous elastic plate; transverse load
UR - http://eudml.org/doc/15548
ER -
References
top- R. A. Adams, Sobolev spaces, Academic Press 1975. (1975) Zbl0314.46030MR0450957
- B. M. Budak A. A. Samarskii A. N. Tikhonov, A collection of problems on mathematical physics, International series of monographs in pure and applied mathematics 52, Pergamon Press, Oxford 1964. (Russian: Izd. Nauka, Moscow 1980, 3rd ed.). (1964) MR0592954
- A. Erdélyi, at., Higher transcendental functions, Vol 2. McGraw Hill 1953. (1953)
- W. G. Faris, Self-adjoint operators, Lecture Notes in Mathematics 433, Springer-Verlag 1975. (1975) Zbl0317.47016MR0467348
- P. Hartman, Ordinary differential equations, J. Wiley and Sons 1964. (1964) Zbl0125.32102MR0171038
- E. Jahnke F. Emde, Tables of functions, Dover Publ. 1945 (4th ed.). (1945) MR0015900
- W. Magnus F. Oberhettinger, Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, Springer-Verlag 1948 (2nd ed.). (1948) MR0025629
- D. E. Mc Farland B. L. Smith W. D. Bernhart, Analysis of plates, Spartan Books 1972. (1972)
- S. G. Mikhlin, Linear partial differential equations, (Russian.) Vysš. škola, Moscow 1977. (1977) MR0510535
- S. Timoshenko D. H. Young W. Weaver, Jr., Vibrations problems in engineering, John Wiley and Sons 1974 (4th ed.). (Russian: Mashinostrojenije, Moscow 1985.) (1974)
- S. Timoshenko S. Woinowski-Krieger, Theory of plates and shells, McGraw Hill 1959. (1959)
- O. Vejvoda, al., Partial differential equations: time-periodic solutions, Martinus Nijhoff 1982. (1982) Zbl0501.35001
- [13J G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press 1958 (2nd ed.). (1958) MR1349110
- J. Weidmann, Linear operators in Hilbert spaces, Graduate texts in Mathematics 68, Springer-Verlag 1980. (1980) Zbl0434.47001MR0566954
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.