Stability of a model for the Belousov-Zhabotinskij reaction

Vladimír Haluška

Aplikace matematiky (1989)

  • Volume: 34, Issue: 2, page 89-104
  • ISSN: 0862-7940

Abstract

top
The paper deals with the Field-Körös-Noyes' model of the Belousov-Yhabotinskij reaction. By means of the method of the Ljapunov function a sufficient condition is determined that the non-trivial critical point of this model be asymptotically stable with respect to a certain set.

How to cite

top

Haluška, Vladimír. "Stability of a model for the Belousov-Zhabotinskij reaction." Aplikace matematiky 34.2 (1989): 89-104. <http://eudml.org/doc/15567>.

@article{Haluška1989,
abstract = {The paper deals with the Field-Körös-Noyes' model of the Belousov-Yhabotinskij reaction. By means of the method of the Ljapunov function a sufficient condition is determined that the non-trivial critical point of this model be asymptotically stable with respect to a certain set.},
author = {Haluška, Vladimír},
journal = {Aplikace matematiky},
keywords = {Field-Körös-Noyes’ model; Belousov-Zhabotinskij reaction; Lyapunov function; equilibrium point; stability in the large; Field-Körös-Noyes’ model; Belousov-Zhabotinskij reaction; Lyapunov function},
language = {eng},
number = {2},
pages = {89-104},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability of a model for the Belousov-Zhabotinskij reaction},
url = {http://eudml.org/doc/15567},
volume = {34},
year = {1989},
}

TY - JOUR
AU - Haluška, Vladimír
TI - Stability of a model for the Belousov-Zhabotinskij reaction
JO - Aplikace matematiky
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 2
SP - 89
EP - 104
AB - The paper deals with the Field-Körös-Noyes' model of the Belousov-Yhabotinskij reaction. By means of the method of the Ljapunov function a sufficient condition is determined that the non-trivial critical point of this model be asymptotically stable with respect to a certain set.
LA - eng
KW - Field-Körös-Noyes’ model; Belousov-Zhabotinskij reaction; Lyapunov function; equilibrium point; stability in the large; Field-Körös-Noyes’ model; Belousov-Zhabotinskij reaction; Lyapunov function
UR - http://eudml.org/doc/15567
ER -

References

top
  1. K. Bachratý, On the stability of a model for the Belousov-Zhabotinskij reaction, Acta mathematica Univ. Comen. XLII-XLIII (2983), 225-234. MR0740754
  2. R. J. Field R. M. Noyes, 10.1063/1.1681288, J. Chem. Phys. 60 (1974), 1877-1884. (1974) DOI10.1063/1.1681288
  3. P. Hartman, Ordinary Differential Equations, J. Wiley and Sons, New York-London-Sydney (1964) (Russian translation, Izdat Mir, Moskva, 1970). (1964) Zbl0125.32102MR0171038
  4. I. D. Hsü, Existence of periodic solutions for the Belousov-Zaikin-Zhabotinskij reaction by a theorem of Hopf, J. Differential Equations 20 (1976), 339-403. (1976) MR0457858
  5. J. La Salle S. Lefschetz, Stability by Liapunov'z Direct method with applications, Academic Press, New York-London (2961) (Russian translation, Izdat. Mir, Moskva, 1964). (1964) 
  6. J. D. Murray, On a model for temporal oscillations in the Belousov-Zhabotinskij reaction, J. Chem. Phys. 6 (1975), 3610-3613. (1975) 
  7. G. Streng, Linear algebra and its applications, Academic Press, New York (1976) (Russian translation, Izdat. Mir, Moskva, 1980). (1976) 
  8. V. Šeda, On the existence of oscillatory solutions in the Weisbuch-Salomon-Atlan model for the Belousov-Zhabotinskij reaction, Apl. Mat. 23 (2978), 280-294. MR0495430
  9. Y. Takeuchi N. Adachi H. Tokumaru, The stability of generalized Volterra equations, J. Math. anal. Appl. 62 (2978), 453-473. MR0477317
  10. J. J. Tyson, The Belousov-Zhabotinskij reaction, Lecture Notes in Biomathematics, Springer-Verlag, Berlin-Heidelberg-New York (1916). (1916) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.