Page 1 Next

Displaying 1 – 20 of 33

Showing per page

Accurate reduction of a model of circadian rhythms by delayed quasi-steady state assumptions

Tomáš Vejchodský (2014)

Mathematica Bohemica

Quasi-steady state assumptions are often used to simplify complex systems of ordinary differential equations in the modelling of biochemical processes. The simplified system is designed to have the same qualitative properties as the original system and to have a small number of variables. This enables to use the stability and bifurcation analysis to reveal a deeper structure in the dynamics of the original system. This contribution shows that introducing delays to quasi-steady state assumptions...

Attractors of Strongly Dissipative Systems

A. G. Ramm (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

A class of infinite-dimensional dissipative dynamical systems is defined for which there exists a unique equilibrium point, and the rate of convergence to this point of the trajectories of a dynamical system from the above class is exponential. All the trajectories of the system converge to this point as t → +∞, no matter what the initial conditions are. This class consists of strongly dissipative systems. An example of such systems is provided by passive systems in network theory (see, e.g., MR0601947...

Diffusion with dissolution and precipitation in a porous medium: Mathematical analysis and numerical approximation of a simplified model

Nicolas Bouillard, Robert Eymard, Raphaele Herbin, Philippe Montarnal (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Modeling the kinetics of a precipitation dissolution reaction occurring in a porous medium where diffusion also takes place leads to a system of two parabolic equations and one ordinary differential equation coupled with a stiff reaction term. This system is discretized by a finite volume scheme which is suitable for the approximation of the discontinuous reaction term of unknown sign. Discrete solutions are shown to exist and converge towards a weak solution of the continuous problem. Uniqueness...

Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics

Marzia Bisi, Laurent Desvillettes, Giampiero Spiga (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.

Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics

Marzia Bisi, Laurent Desvillettes, Giampiero Spiga (2008)

ESAIM: Mathematical Modelling and Numerical Analysis


We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.


Kinetical systems—local analysis

Ladislav Adamec (1998)

Applications of Mathematics

The paper gives the answer to the question of the number and qualitative character of stationary points of an autonomous detailed balanced kinetical system.

Currently displaying 1 – 20 of 33

Page 1 Next