A remark on -regular orthomodular lattices
Aplikace matematiky (1989)
- Volume: 34, Issue: 6, page 449-452
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topRogalewicz, Vladimír. "A remark on $\lambda $-regular orthomodular lattices." Aplikace matematiky 34.6 (1989): 449-452. <http://eudml.org/doc/15600>.
@article{Rogalewicz1989,
abstract = {A finite orthomodular lattice in which every maximal Boolean subalgebra (block) has the same cardinality $k$ is called $\lambda $-regular, if each atom is a member of just $\lambda $ blocks. We estimate the minimal number of blocks of $\lambda $-regular orthomodular lattices to be lower than of equal to $\lambda ^2$ regardless of $k$.},
author = {Rogalewicz, Vladimír},
journal = {Aplikace matematiky},
keywords = {Greechie diagram; finite orthomodular lattice; maximal Boolean subalgebra; Greechie diagram; finite orthomodular lattice; maximal Boolean subalgebra},
language = {eng},
number = {6},
pages = {449-452},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A remark on $\lambda $-regular orthomodular lattices},
url = {http://eudml.org/doc/15600},
volume = {34},
year = {1989},
}
TY - JOUR
AU - Rogalewicz, Vladimír
TI - A remark on $\lambda $-regular orthomodular lattices
JO - Aplikace matematiky
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 6
SP - 449
EP - 452
AB - A finite orthomodular lattice in which every maximal Boolean subalgebra (block) has the same cardinality $k$ is called $\lambda $-regular, if each atom is a member of just $\lambda $ blocks. We estimate the minimal number of blocks of $\lambda $-regular orthomodular lattices to be lower than of equal to $\lambda ^2$ regardless of $k$.
LA - eng
KW - Greechie diagram; finite orthomodular lattice; maximal Boolean subalgebra; Greechie diagram; finite orthomodular lattice; maximal Boolean subalgebra
UR - http://eudml.org/doc/15600
ER -
References
top- M. Dichtl, 10.1007/BF01203371, Algebra Universalis 18 (1984), 380-385. (1984) Zbl0546.06007MR0745498DOI10.1007/BF01203371
- R. J. Greechie, 10.1016/0097-3165(71)90015-X, J. Combinatorial Theory 10 (1971), 119-132. (1971) Zbl0219.06007MR0274355DOI10.1016/0097-3165(71)90015-X
- G. Kalmbach, Orthomodular Lattices, Academic Press, London, 1984. (1984) Zbl0538.06009MR0716496
- E. Köhler, 10.1007/BF01930874, J. of Geometry 119 (1982), 130-145. (1982) MR0695705DOI10.1007/BF01930874
- M. Navara V. Rogalewicz, The pasting constructions for Orthomodular posets, Submitted for publication.
- V. Rogalewicz, Any orthomodular poset is a pasting of Boolean algebras, Comment. Math. Univ. Carol. 29 (1988), 557-558. (1988) Zbl0659.06006MR0972837
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.