Page 1 Next

Displaying 1 – 20 of 156

Showing per page

A new approach to representation of observables on fuzzy quantum posets

Le Ba Long (1992)

Applications of Mathematics

We give a representation of an observable on a fuzzy quantum poset of type II by a pointwise defined real-valued function. This method is inspired by that of Kolesárová [6] and Mesiar [7], and our results extend representations given by the author and Dvurečenskij [4]. Moreover, we show that in this model, the converse representation fails, in general.

A remark on λ -regular orthomodular lattices

Vladimír Rogalewicz (1989)

Aplikace matematiky

A finite orthomodular lattice in which every maximal Boolean subalgebra (block) has the same cardinality k is called λ -regular, if each atom is a member of just λ blocks. We estimate the minimal number of blocks of λ -regular orthomodular lattices to be lower than of equal to λ 2 regardless of k .

A spectral theorem for σ MV-algebras

Sylvia Pulmannová (2005)


MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for σ -MV-algebras, we prove that, with every element a in a σ -MV algebra M , a spectral measure (i. e. an observable) Λ a : ( [ 0 , 1 ] ) ( M ) can be associated, where ( M ) denotes the Boolean σ -algebra...

Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras

Jan Paseka, Zdena Riečanová, Junde Wu (2010)


We prove that the interval topology of an Archimedean atomic lattice effect algebra E is Hausdorff whenever the set of all atoms of E is almost orthogonal. In such a case E is order continuous. If moreover E is complete then order convergence of nets of elements of E is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on E corresponding to compact and cocompact elements....

An atomic MV-effect algebra with non-atomic center

Vladimír Olejček (2007)


Does there exist an atomic lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question (and slightly more) is given: An example of an atomic MV-effect algebra with a non-atomic Boolean subalgebra of sharp or central elements is presented.

Archimedean atomic lattice effect algebras in which all sharp elements are central

Zdena Riečanová (2006)


We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it.

Currently displaying 1 – 20 of 156

Page 1 Next