Continuity of hysteresis operators in Sobolev spaces
Pavel Krejčí; Vladimír Lovicar
Aplikace matematiky (1990)
- Volume: 35, Issue: 1, page 60-66
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKrejčí, Pavel, and Lovicar, Vladimír. "Continuity of hysteresis operators in Sobolev spaces." Aplikace matematiky 35.1 (1990): 60-66. <http://eudml.org/doc/15610>.
@article{Krejčí1990,
	abstract = {We prove that the classical Prandtl, Ishlinskii and Preisach hysteresis operators are continuous in Sobolev spaces $W^\{1,p\}(0,T)$ for $1\le p < +\infty $, (localy) Lipschitz continuous in $W^\{1,1\}(0,T)$ and discontinuous in $W^\{1,\infty \}(0,T)$ for arbitrary $T>0$. Examples show that this result is optimal.},
	author = {Krejčí, Pavel, Lovicar, Vladimír},
	journal = {Aplikace matematiky},
	keywords = {hysteresis operators; Preisach operator; Ishlinskii operator; hysteresis oprators},
	language = {eng},
	number = {1},
	pages = {60-66},
	publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
	title = {Continuity of hysteresis operators in Sobolev spaces},
	url = {http://eudml.org/doc/15610},
	volume = {35},
	year = {1990},
}
TY  - JOUR
AU  - Krejčí, Pavel
AU  - Lovicar, Vladimír
TI  - Continuity of hysteresis operators in Sobolev spaces
JO  - Aplikace matematiky
PY  - 1990
PB  - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL  - 35
IS  - 1
SP  - 60
EP  - 66
AB  - We prove that the classical Prandtl, Ishlinskii and Preisach hysteresis operators are continuous in Sobolev spaces $W^{1,p}(0,T)$ for $1\le p < +\infty $, (localy) Lipschitz continuous in $W^{1,1}(0,T)$ and discontinuous in $W^{1,\infty }(0,T)$ for arbitrary $T>0$. Examples show that this result is optimal.
LA  - eng
KW  - hysteresis operators; Preisach operator; Ishlinskii operator; hysteresis oprators
UR  - http://eudml.org/doc/15610
ER  - 
References
top- M. A. Krasnoselskii A. V. Pokrovskii, Systems with hysteresis, (Russian) Moscow, Nauka, 1983. (1983) MR0742931
- A. V. Pokrovskii, On the theory of hysteresis nonlinearities, (Russian) Dokl. Akad. Nauk SSSR 210 (1973), no. 6, 1284-1287. (1973) MR0333869
- P. Krejčí, On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case, Apl. Mat. 34 (1989), 364-374. (1989) MR1014077
- A. Visintin, On the Preisach model for hysteresis, Nonlinear Anal. T. M. A. 8 (1984), 977-996. (1984) Zbl0563.35007MR0760191
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 