Page 1 Next

Displaying 1 – 20 of 34

Showing per page

A mechanochemical model of angiogenesis and vasculogenesis

Daphne Manoussaki (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Vasculogenesis and angiogenesis are two different mechanisms for blood vessel formation. Angiogenesis occurs when new vessels sprout from pre-existing vasculature in response to external chemical stimuli. Vasculogenesis occurs via the reorganization of randomly distributed cells into a blood vessel network. Experimental models of vasculogenesis have suggested that the cells exert traction forces onto the extracellular matrix and that these forces may play an important role in the network forming...

A mechanochemical model of angiogenesis and vasculogenesis

Daphne Manoussaki (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Vasculogenesis and angiogenesis are two different mechanisms for blood vessel formation. Angiogenesis occurs when new vessels sprout from pre-existing vasculature in response to external chemical stimuli. Vasculogenesis occurs via the reorganization of randomly distributed cells into a blood vessel network. Experimental models of vasculogenesis have suggested that the cells exert traction forces onto the extracellular matrix and that these forces may play an important role in the network forming...

An a posteriori error analysis for dynamic viscoelastic problems

J. R. Fernández, D. Santamarina (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, a dynamic viscoelastic problem is numerically studied. The variational problem is written in terms of the velocity field and it leads to a parabolic linear variational equation. A fully discrete scheme is introduced by using the finite element method to approximate the spatial variable and an Euler scheme to discretize time derivatives. An a priori error estimates result is recalled, from which the linear convergence is derived under suitable regularity conditions. Then, an a posteriori...

An a posteriori error analysis for dynamic viscoelastic problems

J. R. Fernández, D. Santamarina (2011)

ESAIM: Mathematical Modelling and Numerical Analysis


In this paper, a dynamic viscoelastic problem is numerically studied. The variational problem is written in terms of the velocity field and it leads to a parabolic linear variational equation. A fully discrete scheme is introduced by using the finite element method to approximate the spatial variable and an Euler scheme to discretize time derivatives. An a priori error estimates result is recalled, from which the linear convergence is derived under suitable regularity conditions. Then, an a posteriori error...

Continuity of hysteresis operators in Sobolev spaces

Pavel Krejčí, Vladimír Lovicar (1990)

Aplikace matematiky

We prove that the classical Prandtl, Ishlinskii and Preisach hysteresis operators are continuous in Sobolev spaces W 1 , p ( 0 , T ) for 1 p < + , (localy) Lipschitz continuous in W 1 , 1 ( 0 , T ) and discontinuous in W 1 , ( 0 , T ) for arbitrary T > 0 . Examples show that this result is optimal.

Direct approach to mean-curvature flow with topological changes

Petr Pauš, Michal Beneš (2009)

Kybernetika

This contribution deals with the numerical simulation of dislocation dynamics. Dislocations are described by means of the evolution of a family of closed or open smooth curves Γ ( t ) : S 2 , t 0 . The curves are driven by the normal velocity v which is the function of curvature κ and the position. The evolution law reads as: v = - κ + F . The motion law is treated using direct approach numerically solved by two schemes, i. e., backward Euler semi-implicit and semi-discrete method of lines. Numerical stability is improved...

Dislocation dynamics - analytical description of the interaction force between dipolar loops

Vojtěch Minárik, Jan Kratochvíl (2007)

Kybernetika

The interaction between dislocation dipolar loops plays an important role in the computation of the dislocation dynamics. The analytical form of the interaction force between two loops derived in the present paper from Kroupa’s formula of the stress field generated by a single dipolar loop allows for faster computation.

Dynamic frictional contact of a viscoelastic beam

Marco Campo, José R. Fernández, Georgios E. Stavroulakis, Juan M. Viaño (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study the dynamic frictional contact of a viscoelastic beam with a deformable obstacle. The beam is assumed to be situated horizontally and to move, in both horizontal and tangential directions, by the effect of applied forces. The left end of the beam is clamped and the right one is free. Its horizontal displacement is constrained because of the presence of a deformable obstacle, the so-called foundation, which is modelled by a normal compliance contact condition. The effect...

Effective computation of restoring force vector in finite element method

Martin Balazovjech, Ladislav Halada (2007)

Kybernetika

We introduce a new way of computation of time dependent partial differential equations using hybrid method FEM in space and FDM in time domain and explicit computational scheme. The key idea is quick transformation of standard basis functions into new simple basis functions. This new way is used for better computational efficiency. We explain this way of computation on an example of elastodynamic equation using quadrilateral elements. However, the method can be used for more types of elements and...

Efficient application of e-invariants in finite element method for an elastodynamic equation

Martin Balazovjech, Ladislav Halada (2013)

Kybernetika

We introduce a new efficient way of computation of partial differential equations using a hybrid method composed from FEM in space and FDM in time domain. The overall computational scheme is explicit in time. The key idea of the suggested way is based on a transformation of standard basis functions into new basis functions. The results of this matrix transformation are e-invariants (effective invariants) with such suitable properties which save the number of arithmetical operations needed for a...

Elastic wave propagation in parallel: the Huygens' approach.

Javier Sabadell (2002)

Revista Matemática Complutense

The use of parallel computers makes it feasible to simulate elastic waves throughout large heterogeneous structures, and new domain decomposition methods can be used to increase their efficiency and decrease the computing time spent in the simulation. In this paper we introduce a simple parallel algorithm for the propagation of elastic waves in complex heterogeneous media after a finite element discretization. This method performs more efficiently than classic domain decomposition techniques based...

Explicit integration of equations of motion solved on computer cluster

Rek, Václav (2019)

Programs and Algorithms of Numerical Mathematics

In the last decade the dramatic onset of multicore and multi-processor systems in combination with the possibilities which now provide modern computer networks have risen. The complexity and size of the investigated models are constantly increasing due to the high computational complexity of computational tasks in dynamics and statics of structures, mainly because of the nonlinear character of the solved models. Any possibility to speed up such calculation procedures is more than desirable. This...

Currently displaying 1 – 20 of 34

Page 1 Next