On mean value in F -quantum spaces

Beloslav Riečan

Aplikace matematiky (1990)

  • Volume: 35, Issue: 3, page 209-214
  • ISSN: 0862-7940

Abstract

top
The paper deals with a new mathematical model for quantum mechanics based on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic properties of the integral are examined.

How to cite

top

Riečan, Beloslav. "On mean value in $F$-quantum spaces." Aplikace matematiky 35.3 (1990): 209-214. <http://eudml.org/doc/15625>.

@article{Riečan1990,
abstract = {The paper deals with a new mathematical model for quantum mechanics based on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic properties of the integral are examined.},
author = {Riečan, Beloslav},
journal = {Aplikace matematiky},
keywords = {quantum mechanics; observables; states; probability; fuzzy sets; $F$-quantum space; indefinite integral of observables; observable; fuzzy set; F-quantum space; indefinite integral of observables},
language = {eng},
number = {3},
pages = {209-214},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On mean value in $F$-quantum spaces},
url = {http://eudml.org/doc/15625},
volume = {35},
year = {1990},
}

TY - JOUR
AU - Riečan, Beloslav
TI - On mean value in $F$-quantum spaces
JO - Aplikace matematiky
PY - 1990
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 35
IS - 3
SP - 209
EP - 214
AB - The paper deals with a new mathematical model for quantum mechanics based on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic properties of the integral are examined.
LA - eng
KW - quantum mechanics; observables; states; probability; fuzzy sets; $F$-quantum space; indefinite integral of observables; observable; fuzzy set; F-quantum space; indefinite integral of observables
UR - http://eudml.org/doc/15625
ER -

References

top
  1. B. Riečan, A new approach to some notions of statistical quantum mechanics, Busefal 36, 1988, 4-6. (1988) 
  2. B. Riečan A. Dvurečenskij, On randomness and fuzziness, In: Progress in Fuzzy Sets in Europe, (Warszawa 1986), PAN, Warszawa 1988, 321-327. (1986) 
  3. A. Dvurečenskij B. Riečan, On joint distribution of observables for F-quantum spaces, Fuzzy Sets and Systems. MR1089012
  4. A. Dvurečenskij B. Riečan, Fuzziness and commensurability, Fasciculi Mathematici. 
  5. A. Dvurečenskij F. Chovanec, 10.1007/BF00674352, Int. J. Theor. Phys. 27 (1988), 1069-1082. (1988) MR0967421DOI10.1007/BF00674352
  6. A. Tirpáková, On a sum of observables in F-quantum spaces and its applications to convergence theorems, In: Proc. of the First Winter School on Measure Theory (Liptovský Ján 1988), 68-76. (1988) 
  7. A. Dvurečenskij A. Tirpáková, A note on a sum of observables in F-quantum spaces and its properties, Busefal 36 (1988), 132-137. (1988) 
  8. A. Dvurečenskij A. Tirpáková, Sum of observables in fuzzy quantum soaces and convergence theorems 
  9. K. Piasecki, On the extension of fuzzy P-measure generated by outer measure, In: Proc. 2nd Napoli Meeting on the Mathematics of Fuzzy Systems 1985, 119-135. (1985) 
  10. A. Dvurečenskij, The Radon-Nikodým theorem for fuzzy probability spaces 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.