# Nonsingularity and $P$-matrices.

Aplikace matematiky (1990)

- Volume: 35, Issue: 3, page 215-219
- ISSN: 0862-7940

## Access Full Article

top## Abstract

top## How to cite

topRohn, Jiří. "Nonsingularity and $P$-matrices.." Aplikace matematiky 35.3 (1990): 215-219. <http://eudml.org/doc/15626>.

@article{Rohn1990,

abstract = {New proofs of two previously published theorems relating nonsingularity of interval matrices to $P$-matrices are given.},

author = {Rohn, Jiří},

journal = {Aplikace matematiky},

keywords = {nonsingular matrices; $P$-matrices; nonsingularity; interval matrix; P-matrix},

language = {eng},

number = {3},

pages = {215-219},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Nonsingularity and $P$-matrices.},

url = {http://eudml.org/doc/15626},

volume = {35},

year = {1990},

}

TY - JOUR

AU - Rohn, Jiří

TI - Nonsingularity and $P$-matrices.

JO - Aplikace matematiky

PY - 1990

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 35

IS - 3

SP - 215

EP - 219

AB - New proofs of two previously published theorems relating nonsingularity of interval matrices to $P$-matrices are given.

LA - eng

KW - nonsingular matrices; $P$-matrices; nonsingularity; interval matrix; P-matrix

UR - http://eudml.org/doc/15626

ER -

## References

top- M. Fiedler, Special Matrices and Their Use in Numerical Mathematics, (Czech). SNTL, Prague 1981. (1981)
- M. Fiedler V. Pták, On Matrices with Non-Positive Off-Diagonal Elements and Positive Principal Minors, Czechoslovak Math. J. 12 (1962), 382-400. (1962) MR0142565
- D. Gale H. Nikaido, 10.1007/BF01360282, Math. Annalen 159 (1965), 81-93. (1965) MR0204592DOI10.1007/BF01360282
- S. Poljak J. Rohn, Radius of Nonsingularity, KAM Series 88-117, Charles University, Prague 1988. (1988)
- J. Rohn, 10.1016/0024-3795(89)90004-9, Lin. Alg. and Its Appls. 126 (1989), 39-78. (1989) Zbl0712.65029MR1040771DOI10.1016/0024-3795(89)90004-9
- J. Rohn, Characterization of a Linear Program in Standard Form by a Family of Linear Programs with Inequality Constraints, To appear in Ekon.-Mat. Obzor. Zbl0705.90053MR1059547
- H. Samelson R. Thrall O. Wesler, A Partition Theorem for Euclidean n-Space, Proc. of the Amer. Math. Society 9 (1958), 805-807. (1958) MR0097025

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.