### A basis of the set of sequences satisfying a given m-th order linear recurrence.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

This expository paper focuses on the study of extreme surjective functions in ℝℝ. We present several different types of extreme surjectivity by providing examples and crucial properties. These examples help us to establish a hierarchy within the different classes of surjectivity we deal with. The classes presented here are: everywhere surjective functions, strongly everywhere surjective functions, κ-everywhere surjective functions, perfectly everywhere surjective functions and Jones functions. The...

In this paper, a new characterization of previously studied generalized complementary basic matrices is obtained. It is in terms of ranks and structure ranks of submatrices defined by certain diagonal positions. The results concern both the irreducible and general cases.

In this paper, a new characterization of previously studied generalized complementary basic matrices is obtained. It is in terms of ranks and structure ranks of submatrices defined by certain diagonal positions. The results concern both the irreducible and general cases

It is shown that $$\text{rank}\left({P}^{*}AQ\right)=\text{rank}\left({P}^{*}A\right)+\text{rank}\left(AQ\right)-\text{rank}\left(A\right),$$ where $A$ is idempotent, $[P,Q]$ has full row rank and ${P}^{*}Q=0$. Some applications of the rank formula to generalized inverses of matrices are also presented.

The main aim of this paper is to generalize the concept of vector space by the hyperstructure. We generalize some definitions such as hypersubspaces, linear combination, Hamel basis, linearly dependence and linearly independence. A few important results like deletion theorem, extension theorem, dimension theorem have been established in this hypervector space.

Let Mm×n(F) be the vector space of all m×n matrices over a field F. In the case where m ≥ n, char(F) ≠ 2 and F has at least five elements, we give a complete characterization of linear maps Φ: Mm×n(F) → Mm×n(F) such that spark(Φ(A)) = spark(A) for any A ∈Mm×n(F).

This paper investigates the continuity of projection matrices and illustrates an important application of this property to the derivation of the asymptotic distribution of quadratic forms. We give a new proof and an extension of a result of Stewart (1977).

This paper deals with A-spaces in the sense of McDonald over linear algebras A of a certain type. Necessary and sufficient conditions for a submodule to be an A-space are derived.

An algorithm is given to decompose an automorphism of a finite vector space over ℤ₂ into a product of transvections. The procedure uses partitions of the indexing set of a redundant base. With respect to tents, i.e. finite ℤ₂-representations generated by a redundant base, this is a decomposition into base changes.