An optimal control problem for a pseudoparabolic variational inequality
Applications of Mathematics (1992)
- Volume: 37, Issue: 1, page 62-80
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBock, Igor, and Lovíšek, Ján. "An optimal control problem for a pseudoparabolic variational inequality." Applications of Mathematics 37.1 (1992): 62-80. <http://eudml.org/doc/15701>.
@article{Bock1992,
abstract = {We deal with an optimal control problem governed by a pseudoparabolic variational inequality with controls in coefficients and in convex sets of admissible states. The existence theorem for an optimal control parameter will be proved. We apply the theory to the original design problem for a deffection of a viscoelastic plate with an obstacle, where the variable thickness of the plate appears as a control variable.},
author = {Bock, Igor, Lovíšek, Ján},
journal = {Applications of Mathematics},
keywords = {optimal control; pseudoparabolic variational inequality; convex set; penalization; viscoelastic plate; thickness; obstacle; elliptic operators; optimal control; elliptic operators; pseudoparabolic inequality; optimal design; viscoelastic plate},
language = {eng},
number = {1},
pages = {62-80},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An optimal control problem for a pseudoparabolic variational inequality},
url = {http://eudml.org/doc/15701},
volume = {37},
year = {1992},
}
TY - JOUR
AU - Bock, Igor
AU - Lovíšek, Ján
TI - An optimal control problem for a pseudoparabolic variational inequality
JO - Applications of Mathematics
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 37
IS - 1
SP - 62
EP - 80
AB - We deal with an optimal control problem governed by a pseudoparabolic variational inequality with controls in coefficients and in convex sets of admissible states. The existence theorem for an optimal control parameter will be proved. We apply the theory to the original design problem for a deffection of a viscoelastic plate with an obstacle, where the variable thickness of the plate appears as a control variable.
LA - eng
KW - optimal control; pseudoparabolic variational inequality; convex set; penalization; viscoelastic plate; thickness; obstacle; elliptic operators; optimal control; elliptic operators; pseudoparabolic inequality; optimal design; viscoelastic plate
UR - http://eudml.org/doc/15701
ER -
References
top- V. Barbu, Optimal control of variational inequalities, Pitman, Boston, 1984. (1984) Zbl0574.49005MR0742624
- V. Barbu T. Precupanu, Convexity and optimization, Sitjhoff-Noordhoff, Amsterdam, 1978. (1978)
- I. Bock J. Lovíšek, 10.1002/mana.19861250109, Mathematische Nachrichten 125 (1968), 135-151. (1968) MR0847355DOI10.1002/mana.19861250109
- I. Bock J. Lovíšek, Optimal control problems for variational inequalities with controls in coefficients and in unilateral constraints, Aplikace matematiky 32 no. 4 (1987), 301-314. (1987) MR0897834
- H. Brézis, Problémes unilatéraux, Journal de Math. Pures. et Appl. 51 (1972), 1-168. (1972) MR0428137
- H. Brézis, Operateurs maximaux monotones et semigroupes, North Holland, Amsterdam, 1973. (1973)
- H. Brézis, Analyse fonctionelle, Masson, Paris, 1982. (1982)
- J. Brilla, Linear viscoelastic plate bending analysis, Proc. XI-th Congress of applied mechanics, München, 1964. (1964)
- E. Di Benedetto R.E.Showalter, 10.1016/0362-546X(82)90095-5, Nonlinear analysis 6 (1982), 279-291. (1982) MR0654319DOI10.1016/0362-546X(82)90095-5
- H. Gajewski K. Gröner K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie, Berlin, 1974. (1974) MR0636412
- D. Kinderlehrer G. Stampacchia, An introduction to variational inequalities, Academic Press, New York, 1980. (1980) MR0567696
- K. L. Kuttler, Jr., 10.1016/0362-546X(84)90106-8, Nonlinear analysis 8 (1984), 837-850. (1984) Zbl0549.49004MR0753762DOI10.1016/0362-546X(84)90106-8
- J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969. (1969) Zbl0189.40603MR0259693
- U. Mosco, 10.1016/0001-8708(69)90009-7, Advances of Math. 3 (1969), 510-585. (1969) MR0298508DOI10.1016/0001-8708(69)90009-7
- O. R. Ržanicyn, Teoria polzučesti, Strojizdat, Moskva, 1968. (1968)
- L. W. White, 10.1090/S0002-9947-1979-0530053-5, Trans. Amer. Math. Soc. 250 (1979), 235-246. (1979) MR0530053DOI10.1090/S0002-9947-1979-0530053-5
- L. W. White, 10.1137/0318039, SIAM J. of Control and Optim. 18 no. 5 (1980), 534-539. (1980) MR0586169DOI10.1137/0318039
Citations in EuDML Documents
top- Igor Bock, Optimal design problems for a dynamic viscoelastic plate. I. Short memory material
- Igor Bock, Ján Lovíšek, On pseudoparabolic optimal control problems
- Igor Bock, Ján Lovíšek, On the minimum of the work of interaction forces between a pseudoplate and a rigid obstacle
- Igor Bock, Ján Lovíšek, On a reliable solution of a Volterra integral equation in a Hilbert space
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.