An optimal control problem for a pseudoparabolic variational inequality

Igor Bock; Ján Lovíšek

Applications of Mathematics (1992)

  • Volume: 37, Issue: 1, page 62-80
  • ISSN: 0862-7940

Abstract

top
We deal with an optimal control problem governed by a pseudoparabolic variational inequality with controls in coefficients and in convex sets of admissible states. The existence theorem for an optimal control parameter will be proved. We apply the theory to the original design problem for a deffection of a viscoelastic plate with an obstacle, where the variable thickness of the plate appears as a control variable.

How to cite

top

Bock, Igor, and Lovíšek, Ján. "An optimal control problem for a pseudoparabolic variational inequality." Applications of Mathematics 37.1 (1992): 62-80. <http://eudml.org/doc/15701>.

@article{Bock1992,
abstract = {We deal with an optimal control problem governed by a pseudoparabolic variational inequality with controls in coefficients and in convex sets of admissible states. The existence theorem for an optimal control parameter will be proved. We apply the theory to the original design problem for a deffection of a viscoelastic plate with an obstacle, where the variable thickness of the plate appears as a control variable.},
author = {Bock, Igor, Lovíšek, Ján},
journal = {Applications of Mathematics},
keywords = {optimal control; pseudoparabolic variational inequality; convex set; penalization; viscoelastic plate; thickness; obstacle; elliptic operators; optimal control; elliptic operators; pseudoparabolic inequality; optimal design; viscoelastic plate},
language = {eng},
number = {1},
pages = {62-80},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An optimal control problem for a pseudoparabolic variational inequality},
url = {http://eudml.org/doc/15701},
volume = {37},
year = {1992},
}

TY - JOUR
AU - Bock, Igor
AU - Lovíšek, Ján
TI - An optimal control problem for a pseudoparabolic variational inequality
JO - Applications of Mathematics
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 37
IS - 1
SP - 62
EP - 80
AB - We deal with an optimal control problem governed by a pseudoparabolic variational inequality with controls in coefficients and in convex sets of admissible states. The existence theorem for an optimal control parameter will be proved. We apply the theory to the original design problem for a deffection of a viscoelastic plate with an obstacle, where the variable thickness of the plate appears as a control variable.
LA - eng
KW - optimal control; pseudoparabolic variational inequality; convex set; penalization; viscoelastic plate; thickness; obstacle; elliptic operators; optimal control; elliptic operators; pseudoparabolic inequality; optimal design; viscoelastic plate
UR - http://eudml.org/doc/15701
ER -

References

top
  1. V. Barbu, Optimal control of variational inequalities, Pitman, Boston, 1984. (1984) Zbl0574.49005MR0742624
  2. V. Barbu T. Precupanu, Convexity and optimization, Sitjhoff-Noordhoff, Amsterdam, 1978. (1978) 
  3. I. Bock J. Lovíšek, 10.1002/mana.19861250109, Mathematische Nachrichten 125 (1968), 135-151. (1968) MR0847355DOI10.1002/mana.19861250109
  4. I. Bock J. Lovíšek, Optimal control problems for variational inequalities with controls in coefficients and in unilateral constraints, Aplikace matematiky 32 no. 4 (1987), 301-314. (1987) MR0897834
  5. H. Brézis, Problémes unilatéraux, Journal de Math. Pures. et Appl. 51 (1972), 1-168. (1972) MR0428137
  6. H. Brézis, Operateurs maximaux monotones et semigroupes, North Holland, Amsterdam, 1973. (1973) 
  7. H. Brézis, Analyse fonctionelle, Masson, Paris, 1982. (1982) 
  8. J. Brilla, Linear viscoelastic plate bending analysis, Proc. XI-th Congress of applied mechanics, München, 1964. (1964) 
  9. E. Di Benedetto R.E.Showalter, 10.1016/0362-546X(82)90095-5, Nonlinear analysis 6 (1982), 279-291. (1982) MR0654319DOI10.1016/0362-546X(82)90095-5
  10. H. Gajewski K. Gröner K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie, Berlin, 1974. (1974) MR0636412
  11. D. Kinderlehrer G. Stampacchia, An introduction to variational inequalities, Academic Press, New York, 1980. (1980) MR0567696
  12. K. L. Kuttler, Jr., 10.1016/0362-546X(84)90106-8, Nonlinear analysis 8 (1984), 837-850. (1984) Zbl0549.49004MR0753762DOI10.1016/0362-546X(84)90106-8
  13. J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969. (1969) Zbl0189.40603MR0259693
  14. U. Mosco, 10.1016/0001-8708(69)90009-7, Advances of Math. 3 (1969), 510-585. (1969) MR0298508DOI10.1016/0001-8708(69)90009-7
  15. O. R. Ržanicyn, Teoria polzučesti, Strojizdat, Moskva, 1968. (1968) 
  16. L. W. White, 10.1090/S0002-9947-1979-0530053-5, Trans. Amer. Math. Soc. 250 (1979), 235-246. (1979) MR0530053DOI10.1090/S0002-9947-1979-0530053-5
  17. L. W. White, 10.1137/0318039, SIAM J. of Control and Optim. 18 no. 5 (1980), 534-539. (1980) MR0586169DOI10.1137/0318039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.