Recursive estimates of quantile based on 0-1 observations
Applications of Mathematics (1992)
- Volume: 37, Issue: 3, page 173-192
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topCharamza, Pavel. "Recursive estimates of quantile based on 0-1 observations." Applications of Mathematics 37.3 (1992): 173-192. <http://eudml.org/doc/15709>.
@article{Charamza1992,
abstract = {The objective of this paper is to introduce some recursive methods that can be used for estimating an $LD-50$ value. These methods can be used more generally for the estimation of the $\gamma $-quantile of an unknown distribution provided we have 0-1 observations at our disposal. Standard methods based on the Robbins-Monro procedure are introduced together with different approaches of Wu or Mukerjee. Several examples are also mentioned in order to demonstrate the usefulness of the methods presented.},
author = {Charamza, Pavel},
journal = {Applications of Mathematics},
keywords = {nonparametric methods; isotonic regression; quantile; recursive methods; $LD-50$ value; 0-1 observations; Robbins-Monro procedure; examples; stochastic approximation; nonparametric methods; isotonic regression; quantile; recursive methods; -50 value; 0-1 observations; Robbins-Monro procedure; examples},
language = {eng},
number = {3},
pages = {173-192},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Recursive estimates of quantile based on 0-1 observations},
url = {http://eudml.org/doc/15709},
volume = {37},
year = {1992},
}
TY - JOUR
AU - Charamza, Pavel
TI - Recursive estimates of quantile based on 0-1 observations
JO - Applications of Mathematics
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 37
IS - 3
SP - 173
EP - 192
AB - The objective of this paper is to introduce some recursive methods that can be used for estimating an $LD-50$ value. These methods can be used more generally for the estimation of the $\gamma $-quantile of an unknown distribution provided we have 0-1 observations at our disposal. Standard methods based on the Robbins-Monro procedure are introduced together with different approaches of Wu or Mukerjee. Several examples are also mentioned in order to demonstrate the usefulness of the methods presented.
LA - eng
KW - nonparametric methods; isotonic regression; quantile; recursive methods; $LD-50$ value; 0-1 observations; Robbins-Monro procedure; examples; stochastic approximation; nonparametric methods; isotonic regression; quantile; recursive methods; -50 value; 0-1 observations; Robbins-Monro procedure; examples
UR - http://eudml.org/doc/15709
ER -
References
top- Barlow R. E., Bartholomew D. J., Bremner J. M., and Brunk H.D., Statistical Inference Under Order Restrictions, Wiley, London, 1972. (1972)
- Blum J. R., Multidimensional stochastic approximation procedures, AMS 25 (1954), 737-744. (1954) MR0065092
- Charamza P., Stochastic approximation on the lattice, Diploma work, Faculty of mathematics and physics, Charles University Prague, 1984. (In Czech.) (1984)
- Charamza P., Software for stochastic approximation, Proceedings of the conference ROBUST 1990. (1990)
- Derman C., Non-parametric up-and-down experimentation, AMS 28 (1957), 795-797. (1957) Zbl0084.14801MR0090956
- Dixon Mood, 10.1080/01621459.1948.10483254, JASA 43 (1948), 109-126. (1948) DOI10.1080/01621459.1948.10483254
- Dupač V., 10.1007/BF02613138, Metrika 34 (1987), 117-123. (1987) MR0882505DOI10.1007/BF02613138
- Dupač V., Henkenrath U., On integer stochastic approximation, Aplikace matematiky 29 (1984), 372-383. (1984) MR0772272
- Fabián V., On asymptotic normality in stochastic approximation, AMS 39 (1968), 1327-1332. (1968) MR0231429
- Holst U., Recursive estimation of quantiles, Contributions to probability and statistics in honor of Gunnar Blom, Univ. Lund, 1985, pp. 179-188. (1985) Zbl0575.62074MR0795057
- Lord P. M., 10.1080/01621459.1971.10482333, Journal of the American Statistical Association 66 (1971), 707-711. (1971) Zbl0257.62049DOI10.1080/01621459.1971.10482333
- Mukerjee H. G., A stochastic approximation by observation on a discrete lattice using isotonic regression, AMS 9 (1981), 1020-1025. (1981) MR0628757
- Nevelson M. B., On the properties of the recursive estimates for a functional of an unknown distribution function, Limit Theorems of Probability Theory (P. Revezs, eds.), Amsterodam, 1975, pp. 227-252. (1975) MR0395113
- Robbins H., Lai T. L., Adaptive design and stochastic approximation, AS 7 (1979), 1196-1221. (1979) Zbl0426.62059MR0550144
- Robbins H., Lai T. L., 10.1007/BF00536178, Z. Wahrsch. Verw. Gebiete 56 (1981), 329-360. (1981) Zbl0472.62089MR0621117DOI10.1007/BF00536178
- Roth, Josífko, Malý, Trčka, Statistical methods in experimental medicine, Státní. zdravotnické nakladatelství, Praha, 1962, pp. 592. (In Czech.) (1962)
- Sacks J., Asymptotic distribution of stochastic approximation procedures, AMS 29 (1958), 373-405. (1958) Zbl0229.62010MR0098427
- Wu C.F. J., 10.1080/01621459.1985.10478213, Journal of the American Statistical Association 80 (1985), 974-984. (1985) Zbl0588.62133MR0819603DOI10.1080/01621459.1985.10478213
- Silvapulle M. J., On the existence of maximum likelihood estimators for the binomial response problem, Journal of the Royal Statistical Society, Ser. B 43 (1981), 310-313. (1981) MR0637943
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.