Strong convergence estimates for pseudospectral methods
Applications of Mathematics (1992)
- Volume: 37, Issue: 6, page 401-417
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHeinrichs, Wilhelm. "Strong convergence estimates for pseudospectral methods." Applications of Mathematics 37.6 (1992): 401-417. <http://eudml.org/doc/15724>.
@article{Heinrichs1992,
abstract = {Strong convergence estimates for pseudospectral methods applied to ordinary boundary value problems are derived. The results are also used for a convergence analysis of the Schwarz algorithm (a special domain decomposition technique). Different types of nodes (Chebyshev, Legendre nodes) are examined and compared.},
author = {Heinrichs, Wilhelm},
journal = {Applications of Mathematics},
keywords = {pseudospectral; collocation; Schwarz algorithm; strong convergence estimates; domain decomposition; Legendre nodes; Chebyshev nodes; strong convergence estimates; pseudospectral methods; Schwarz algorithm; domain decomposition; Legendre nodes; Chebyshev nodes},
language = {eng},
number = {6},
pages = {401-417},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong convergence estimates for pseudospectral methods},
url = {http://eudml.org/doc/15724},
volume = {37},
year = {1992},
}
TY - JOUR
AU - Heinrichs, Wilhelm
TI - Strong convergence estimates for pseudospectral methods
JO - Applications of Mathematics
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 37
IS - 6
SP - 401
EP - 417
AB - Strong convergence estimates for pseudospectral methods applied to ordinary boundary value problems are derived. The results are also used for a convergence analysis of the Schwarz algorithm (a special domain decomposition technique). Different types of nodes (Chebyshev, Legendre nodes) are examined and compared.
LA - eng
KW - pseudospectral; collocation; Schwarz algorithm; strong convergence estimates; domain decomposition; Legendre nodes; Chebyshev nodes; strong convergence estimates; pseudospectral methods; Schwarz algorithm; domain decomposition; Legendre nodes; Chebyshev nodes
UR - http://eudml.org/doc/15724
ER -
References
top- L. Brutman, 10.1137/0715046, Siam J. Numer. Anal. 15 (1978), 694-704. (1978) Zbl0391.41002MR0510554DOI10.1137/0715046
- C. Canuto A. Quarteroni, 10.1090/S0025-5718-1982-0637287-3, Math. Comput. 38 (1982), 67-86. (1982) MR0637287DOI10.1090/S0025-5718-1982-0637287-3
- C. Canute, 10.1137/0723052, Siam J. Numer. Anal. 23 (1986), 815-831. (1986) MR0849284DOI10.1137/0723052
- C. Canuto A. Quarteroni, Variational methods in the theoretical analysis of spectral approximations, in Spectral Methods for Partial Differential Equations , Society for Industrial and Applied Mathematics, Philadelphia, PA (1984), 55-78 (R. G. Voigt, D. Gottlieb and M. Y. Hussaini, eds.). (1984) MR0758262
- C. Canuto A. Quarteroni, 10.1007/BF02576357, Calcolo 18 (1981), 197-218. (1981) MR0647825DOI10.1007/BF02576357
- C. Canuto D. Funaro, 10.1137/0725003, Siam J. Numer. Anal. 25 (1988), 24-40. (1988) MR0923923DOI10.1137/0725003
- L. Collatz, Differentialgleichungen, Teubner Studienbucher, Stuttgart, 1973. (1973) Zbl0267.65001MR0352575
- J. W. Cooley A. W. Lewis P. D. Walch, The Fast Transform Algorithm: Programming considerations in the calculation of sine, cosine and Laplace transform, J. Sound vib. 12 (1970), 105-112. (1970)
- R. De Vore, 10.1016/0021-9045(68)90008-7, J. Approx. Theory 1 (1968), 314-318. (1968) DOI10.1016/0021-9045(68)90008-7
- H. Ehlich K. Zeller, Auswertung der Normen von Interpolations-operatoren, Math. Analen 164 (1986), 105-112. (1986) MR0194799
- L. W. Kantorowitsch G. P. Akilow, Funktionalanalysis in normierten Räumen, Akademie-Verlag, Berlin, 1964. (1964) MR0177273
- I. P. Natanson, Constructive function theory. III. Interpolation and approximation quadratures, Frederick Ungar Publishing CO., New York, 1965. (1965)
- M. J. Pоwel, 10.1093/comjnl/9.4.404, Com. J. 9 (1967), 404-407. (1967) MR0208807DOI10.1093/comjnl/9.4.404
- T. J. Rivlin, The Lebesgue constants for polynomial interpolation, in Functional analysis and its application (H. G. Garnir et al., Springer-Verlag, ed.), Berlin-Heidelberg-New York, 1974, pp. 422-437. (1974) Zbl0299.41005MR0399706
- G. Rodrigue P. Saylor, Inner/outer iterative methods and numerical Schwarz algorithm II, -Proceedings of the IBM Conference on Vector and Parallel Processors for Scientific Computations, Rome, 1985. (1985) MR0825967
- G. Rodrigue J. Simon, A generalization of the numerical Schwarz algorithm, , Computing Methods in Applied Sciences and Engineering VI (R. Glowinski and J. L. Lions, eds.), North Holland, 1984. (1984) MR0806784
- H. A. Schwarz, Gesammelte Mathematische Abhandlungen, Vol. 2, Springer-Verlag, Berlin.
- G. Szegö, Orthogonal polynomials, Am. Math. Soc., New York, 1939. (1939)
- C. Temperton, On the FACR(1) algorithm for the discrete Poisson equation, J. Соmр. Phys. 34 (1980), 314-329. (1980) MR0562366
- G. M. Vainikko, Differential Equations 1, (1965), 186-194. (1965)
- G. M. Vainikko, 10.1016/0041-5553(66)90031-0, USSR Соmр. Math. and Math. Phys. 6 (1966), 47-58. (1966) MR0196945DOI10.1016/0041-5553(66)90031-0
- H. Werner R. Schaback, Praktische Mathematik II, Springer-Verlag, Berlin-Heidelberg- New York, 1972. (1972) MR0520918
- K. Witsch, Konvergenzaussagen für Projektionsverfahren bei linearen Operatoren, insbesondere Randwertaufgaben, Doctoral Thesis, Köln, 1974. (1974)
- K. Witsch, 10.1007/BF01396182, Numer. Math. 27 (1977), 339-354. (1977) Zbl0336.65031MR0443361DOI10.1007/BF01396182
- T. A. Zang Y. S. Wong M. Y. Hussaini, Spectral multigrid methods for elliptic equations I, J. Соmр. Phys. 48 (1992), 485-501. (1992) MR0755459
- T. A. Zang Y. S. Wong M. Y. Hussaini, Spectral multigrid methods for elliptic equations II, J. Соmр. Phys. 54 (1984), 489-507. (1984) MR0755456
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.