Strong convergence estimates for pseudospectral methods

Wilhelm Heinrichs

Applications of Mathematics (1992)

  • Volume: 37, Issue: 6, page 401-417
  • ISSN: 0862-7940

Abstract

top
Strong convergence estimates for pseudospectral methods applied to ordinary boundary value problems are derived. The results are also used for a convergence analysis of the Schwarz algorithm (a special domain decomposition technique). Different types of nodes (Chebyshev, Legendre nodes) are examined and compared.

How to cite

top

Heinrichs, Wilhelm. "Strong convergence estimates for pseudospectral methods." Applications of Mathematics 37.6 (1992): 401-417. <http://eudml.org/doc/15724>.

@article{Heinrichs1992,
abstract = {Strong convergence estimates for pseudospectral methods applied to ordinary boundary value problems are derived. The results are also used for a convergence analysis of the Schwarz algorithm (a special domain decomposition technique). Different types of nodes (Chebyshev, Legendre nodes) are examined and compared.},
author = {Heinrichs, Wilhelm},
journal = {Applications of Mathematics},
keywords = {pseudospectral; collocation; Schwarz algorithm; strong convergence estimates; domain decomposition; Legendre nodes; Chebyshev nodes; strong convergence estimates; pseudospectral methods; Schwarz algorithm; domain decomposition; Legendre nodes; Chebyshev nodes},
language = {eng},
number = {6},
pages = {401-417},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong convergence estimates for pseudospectral methods},
url = {http://eudml.org/doc/15724},
volume = {37},
year = {1992},
}

TY - JOUR
AU - Heinrichs, Wilhelm
TI - Strong convergence estimates for pseudospectral methods
JO - Applications of Mathematics
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 37
IS - 6
SP - 401
EP - 417
AB - Strong convergence estimates for pseudospectral methods applied to ordinary boundary value problems are derived. The results are also used for a convergence analysis of the Schwarz algorithm (a special domain decomposition technique). Different types of nodes (Chebyshev, Legendre nodes) are examined and compared.
LA - eng
KW - pseudospectral; collocation; Schwarz algorithm; strong convergence estimates; domain decomposition; Legendre nodes; Chebyshev nodes; strong convergence estimates; pseudospectral methods; Schwarz algorithm; domain decomposition; Legendre nodes; Chebyshev nodes
UR - http://eudml.org/doc/15724
ER -

References

top
  1. L. Brutman, 10.1137/0715046, Siam J. Numer. Anal. 15 (1978), 694-704. (1978) Zbl0391.41002MR0510554DOI10.1137/0715046
  2. C. Canuto A. Quarteroni, 10.1090/S0025-5718-1982-0637287-3, Math. Comput. 38 (1982), 67-86. (1982) MR0637287DOI10.1090/S0025-5718-1982-0637287-3
  3. C. Canute, 10.1137/0723052, Siam J. Numer. Anal. 23 (1986), 815-831. (1986) MR0849284DOI10.1137/0723052
  4. C. Canuto A. Quarteroni, Variational methods in the theoretical analysis of spectral approximations, in Spectral Methods for Partial Differential Equations , Society for Industrial and Applied Mathematics, Philadelphia, PA (1984), 55-78 (R. G. Voigt, D. Gottlieb and M. Y. Hussaini, eds.). (1984) MR0758262
  5. C. Canuto A. Quarteroni, 10.1007/BF02576357, Calcolo 18 (1981), 197-218. (1981) MR0647825DOI10.1007/BF02576357
  6. C. Canuto D. Funaro, 10.1137/0725003, Siam J. Numer. Anal. 25 (1988), 24-40. (1988) MR0923923DOI10.1137/0725003
  7. L. Collatz, Differentialgleichungen, Teubner Studienbucher, Stuttgart, 1973. (1973) Zbl0267.65001MR0352575
  8. J. W. Cooley A. W. Lewis P. D. Walch, The Fast Transform Algorithm: Programming considerations in the calculation of sine, cosine and Laplace transform, J. Sound vib. 12 (1970), 105-112. (1970) 
  9. R. De Vore, 10.1016/0021-9045(68)90008-7, J. Approx. Theory 1 (1968), 314-318. (1968) DOI10.1016/0021-9045(68)90008-7
  10. H. Ehlich K. Zeller, Auswertung der Normen von Interpolations-operatoren, Math. Analen 164 (1986), 105-112. (1986) MR0194799
  11. L. W. Kantorowitsch G. P. Akilow, Funktionalanalysis in normierten Räumen, Akademie-Verlag, Berlin, 1964. (1964) MR0177273
  12. I. P. Natanson, Constructive function theory. III. Interpolation and approximation quadratures, Frederick Ungar Publishing CO., New York, 1965. (1965) 
  13. M. J. Pоwel, 10.1093/comjnl/9.4.404, Com. J. 9 (1967), 404-407. (1967) MR0208807DOI10.1093/comjnl/9.4.404
  14. T. J. Rivlin, The Lebesgue constants for polynomial interpolation, in Functional analysis and its application (H. G. Garnir et al., Springer-Verlag, ed.), Berlin-Heidelberg-New York, 1974, pp. 422-437. (1974) Zbl0299.41005MR0399706
  15. G. Rodrigue P. Saylor, Inner/outer iterative methods and numerical Schwarz algorithm II, -Proceedings of the IBM Conference on Vector and Parallel Processors for Scientific Computations, Rome, 1985. (1985) MR0825967
  16. G. Rodrigue J. Simon, A generalization of the numerical Schwarz algorithm, , Computing Methods in Applied Sciences and Engineering VI (R. Glowinski and J. L. Lions, eds.), North Holland, 1984. (1984) MR0806784
  17. H. A. Schwarz, Gesammelte Mathematische Abhandlungen, Vol. 2, Springer-Verlag, Berlin. 
  18. G. Szegö, Orthogonal polynomials, Am. Math. Soc., New York, 1939. (1939) 
  19. C. Temperton, On the FACR(1) algorithm for the discrete Poisson equation, J. Соmр. Phys. 34 (1980), 314-329. (1980) MR0562366
  20. G. M. Vainikko, Differential Equations 1, (1965), 186-194. (1965) 
  21. G. M. Vainikko, 10.1016/0041-5553(66)90031-0, USSR Соmр. Math. and Math. Phys. 6 (1966), 47-58. (1966) MR0196945DOI10.1016/0041-5553(66)90031-0
  22. H. Werner R. Schaback, Praktische Mathematik II, Springer-Verlag, Berlin-Heidelberg- New York, 1972. (1972) MR0520918
  23. K. Witsch, Konvergenzaussagen für Projektionsverfahren bei linearen Operatoren, insbesondere Randwertaufgaben, Doctoral Thesis, Köln, 1974. (1974) 
  24. K. Witsch, 10.1007/BF01396182, Numer. Math. 27 (1977), 339-354. (1977) Zbl0336.65031MR0443361DOI10.1007/BF01396182
  25. T. A. Zang Y. S. Wong M. Y. Hussaini, Spectral multigrid methods for elliptic equations I, J. Соmр. Phys. 48 (1992), 485-501. (1992) MR0755459
  26. T. A. Zang Y. S. Wong M. Y. Hussaini, Spectral multigrid methods for elliptic equations II, J. Соmр. Phys. 54 (1984), 489-507. (1984) MR0755456

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.