Oscillations of a nonlinearly damped extensible beam

Eduard Feireisl; Leopold Herrmann

Applications of Mathematics (1992)

  • Volume: 37, Issue: 6, page 469-478
  • ISSN: 0862-7940

Abstract

top
It is proved that any weak solution to a nonlinear beam equation is eventually globally oscillatory, i.e., there is a uniform oscillatory interval for large times.

How to cite

top

Feireisl, Eduard, and Herrmann, Leopold. "Oscillations of a nonlinearly damped extensible beam." Applications of Mathematics 37.6 (1992): 469-478. <http://eudml.org/doc/15729>.

@article{Feireisl1992,
abstract = {It is proved that any weak solution to a nonlinear beam equation is eventually globally oscillatory, i.e., there is a uniform oscillatory interval for large times.},
author = {Feireisl, Eduard, Herrmann, Leopold},
journal = {Applications of Mathematics},
keywords = {oscillations; nonlinear beam; weak solution; uniform oscillatory interval; weak solution; uniform oscillatory interval},
language = {eng},
number = {6},
pages = {469-478},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillations of a nonlinearly damped extensible beam},
url = {http://eudml.org/doc/15729},
volume = {37},
year = {1992},
}

TY - JOUR
AU - Feireisl, Eduard
AU - Herrmann, Leopold
TI - Oscillations of a nonlinearly damped extensible beam
JO - Applications of Mathematics
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 37
IS - 6
SP - 469
EP - 478
AB - It is proved that any weak solution to a nonlinear beam equation is eventually globally oscillatory, i.e., there is a uniform oscillatory interval for large times.
LA - eng
KW - oscillations; nonlinear beam; weak solution; uniform oscillatory interval; weak solution; uniform oscillatory interval
UR - http://eudml.org/doc/15729
ER -

References

top
  1. Вall J, 10.1016/0022-247X(73)90121-2, J. Math. Anal. Appl. 42 (1973), 61-90. (1973) MR0319440DOI10.1016/0022-247X(73)90121-2
  2. Ball J., 10.1016/0022-0396(73)90056-9, J. Differential Equations 14 (1973), 339-418. (1973) Zbl0247.73054MR0331921DOI10.1016/0022-0396(73)90056-9
  3. Cazenave T., Haraux A., Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires, C. R. Acad. Sc. Paris 298 Sér. I no. 18 (1984), 449-452. (1984) Zbl0571.35074MR0750743
  4. Cazenave T., Haraux A., 10.1090/S0002-9947-1987-0871673-2, Trans. Amer. Math. Soc. 300 (1987), 207-233. (1987) Zbl0628.35058MR0871673DOI10.1090/S0002-9947-1987-0871673-2
  5. Cazenave T., Haraux A., 10.1016/0022-1236(88)90050-X, J. Functional Anal. 76 (1988), 87-109. (1988) Zbl0656.35099MR0923046DOI10.1016/0022-1236(88)90050-X
  6. Eisley J. G., 10.1007/BF01602658, Z. Angew. Math. Phys. 15 (1964), 167-175. (1964) MR0175375DOI10.1007/BF01602658
  7. Feireisl E., Herrmann L., Vejvoda O., A Landesman-Lazer type condition and the long time behavior of floating plates, preprint, 1991. (1991) MR1309062
  8. Haraux A., Zuazua E., 10.1016/0022-0396(88)90015-0, J. Differential Equations 74 (1988), 11-28. (1988) Zbl0654.34018MR0949622DOI10.1016/0022-0396(88)90015-0
  9. Herrmann L., Optimal oscillatory time for a class of second order nonlinear dissipative ODE, preprint. Zbl0772.34030MR1175931
  10. Kopáčková M., Vejvoda O., Periodic vibrations of an extensible beam, Časopis pro pěstování matematiky 102 (1977), 356-363. (1977) MR0492762
  11. Kreith K., Oscillation theory, Lecture Notes in Mathematics 324, Springer Verlag, 1973. (1973) Zbl0258.35001
  12. Kreith K., Kusano T., Yoshida N., 10.1137/0515043, SIAM J. Math. Anal. 15 no. 3 (1984). (1984) MR0740696DOI10.1137/0515043
  13. Lions J.-L., Magenes E., Problèmes aux limites non homogènes et applications I, Ch. 3, Sec. 8.4, Dunod, Paris. 
  14. Lovicar V., Periodic solutions of nonlinear abstract second order equations with dissipative terms, Časopis pro pěstování matematiky 102 (1977), 364-369. (1977) Zbl0369.34017MR0508656
  15. Lunardi A., Local stability results for the elastic beam equation, SIAM J. Math. Anal. 18 no. 5 (987), 1341-1366. Zbl0643.35055MR0902336
  16. McKenna Walter W., 10.1007/BF00251232, Arch. Rational Mech. Anal. 98 (1987), 167-177. (1987) MR0866720DOI10.1007/BF00251232
  17. Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Ch, 2, Sec. 4.1, Applied Mathematical Sciences 68, Springer Verlag, 1988, (1988) MR0953967
  18. Woinowski-Krieger S., The effect of an axial force on the vibration of hinged bars, J. Appi. Mech. 17 (1950), 35-36. (1950) MR0034202
  19. Yoshida N., 10.1007/BF01762806, Annali Mat. Pura Appl. 151 (1988), 389-398. (1988) MR0964521DOI10.1007/BF01762806
  20. Zuazua E., Oscillation properties for some damped hyperbolic problems, Houston J. Math. 16 (1990), 25-52. (1990) MR1071264

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.