Loading [MathJax]/extensions/MathZoom.js
In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.
Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann equation. To define the quantum Maxwellian...
Numerically solving the Boltzmann kinetic equations with the small Knudsen number is
challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving
schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010)
7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision
term by a BGK type operator. This method, however, encounters its own difficulty when
applied to the quantum Boltzmann...
A stochastic generalized Born (GB) solver is presented which can give predictions of energies arbitrarily close to those that would be given by exact effective GB radii, and, unlike analytical GB solvers, these errors are Gaussian with estimates that can be easily obtained from the algorithm. This method was tested by computing the electrostatic solvation energies (ΔGsolv) and the electrostatic binding energies (ΔGbind) of a set of DNA-drug complexes, a set of protein-drug complexes, a set of protein-protein...
This special volume of the ESAIM Journal, Mathematical Modelling and Numerical Analysis,
contains a collection of articles on probabilistic interpretations of
some classes of nonlinear integro-differential equations.
The selected contributions deal with a wide range of topics in applied probability theory and stochastic analysis,
with applications in a variety of scientific disciplines, including
physics, biology, fluid
mechanics, molecular chemistry, financial mathematics and bayesian statistics....
We present a new necessary and sufficient condition for the asymptotic stability of Markov operators acting on the space of signed measures. The proof is based on some special properties of the total variation norm. Our method allows us to consider the Tjon-Wu equation in a linear form. More precisely a new proof of the asymptotic stability of a stationary solution of the Tjon-Wu equation is given.
In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation with the Dirichlet boundary conditions is proved. No “smallness” assumptions are made concerning the function . The main idea of the proof relies on the compensated compactness theory.
In the paper, time-periodic solutions to dynamic von Kármán equations are investigated. Assuming that there is a damping term in the equations we are able to show the existence of at least one solution to the problem. The Faedo-Galerkin method is used together with some basic ideas concerning monotone operators on Orlicz spaces.
The authors prove the global existence and exponential stability of solutions of the given system of equations under the condition that the initial velocities and the external forces are small and the initial density is not far from a constant one. If the external forces are periodic, then solutions periodic with the same period are obtained. The investigated system of equations is a bit non-standard - for example the displacement current in the Maxwell equations is not neglected.
The paper contains the proof of global existence of weak solutions viscous compressible isothermal bipolar fluid of initial boundary value in a finite channel.
We provide some new explicit expressions for the linearized non-cutoff radially symmetric Boltzmann operator with Maxwellian molecules, proving that this operator is a simple function of the standard harmonic oscillator. A detailed article is available on arXiv [15].
In this note I present the main results about the quantitative and qualitative propagation of chaos for the Boltzmann-Kac system obtained in collaboration with C. Mouhot in [33] which gives a possible answer to some questions formulated by Kac in [25]. We also present some related recent results about Kac’s chaos and Kac’s program obtained in [34, 23, 13] by K. Carrapatoso, M. Hauray, C. Mouhot, B. Wennberg and myself.
Currently displaying 1 –
20 of
39