A necessary and sufficient criterion to guarantee feasibility of the interval Gaussian algorithm for a class of matrices
Applications of Mathematics (1993)
- Volume: 38, Issue: 3, page 205-220
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topReferences
top- G. Alefeld, Über die Durchführbarkeit des Gaußschen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten, Computing Suppl. 1 (1977), 15-19. (1977) Zbl0361.65017
- G. Alefeld, J. Herzberger, Introduction to Interval Computations, Academic Press, New York, 1983. (1983) Zbl0552.65041MR0733988
- H. Bauch K.-U. Jahn D. Oelschlägel H. Süsse, V. Wiebigke, Intervallmathematik, BSB B.G. Teubner Verlagsgesellschaft, 1987. (1987) MR0927085
- A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979. (1979) Zbl0484.15016MR0544666
- A. Frommer, G. Mayer, A new criterion to guarantee the feasibility of the interval Gaussian algorithm, SIAM J. Matrix Anal. Appl., in press. Zbl0777.65012
- R. Klatte U. Kulisch M. Neaga D. Ratz, Ch. Ullrich, PASCAL-XSC, Sprachbeschreibung mit Beispielen, Springer, Berlin, 1991. (1991)
- G. Mayer, Old and new aspects of the interval Gaussian algorithm, Computer Arithmetic, Scientific Computation and Mathematical Modelling (E. Kaucher, S.M. Markov, G. Mayer, eds.), IMACS Annals on Computing and Applied Mathematics 12, Baltzer, Basel, 1991, pp. 329-349. (1991) MR1189151
- R.E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, N.J., 1966. (1966) Zbl0176.13301MR0231516
- A. Neumaier, 10.1016/0024-3795(84)90217-9, Linear Algebra Appl. 58 (1984), 273-325. (1984) Zbl0558.65019MR0739292DOI10.1016/0024-3795(84)90217-9
- A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990. (1990) Zbl0715.65030MR1100928
- K. Reichmann, 10.1007/BF02265315, Computing 22 (1979), 355-361. (1979) Zbl0423.65018MR0620062DOI10.1007/BF02265315
- R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1963. (1963) Zbl0133.08602MR0158502