A necessary and sufficient criterion to guarantee feasibility of the interval Gaussian algorithm for a class of matrices

Günter Mayer; Lars Pieper

Applications of Mathematics (1993)

  • Volume: 38, Issue: 3, page 205-220
  • ISSN: 0862-7940

Abstract

top
A necessary and sufficient to guarantee feasibility of the interval Gaussian algorithms for a class of matrices. We apply the interval Gaussian algorithm to an n × n interval matrix [ A ] the comparison matrix [ A ] of which is irreducible and diagonally dominant. We derive a new necessary and sufficient criterion for the feasibility of this method extending a recently given sufficient criterion.

How to cite

top

Mayer, Günter, and Pieper, Lars. "A necessary and sufficient criterion to guarantee feasibility of the interval Gaussian algorithm for a class of matrices." Applications of Mathematics 38.3 (1993): 205-220. <http://eudml.org/doc/15747>.

@article{Mayer1993,
abstract = {A necessary and sufficient to guarantee feasibility of the interval Gaussian algorithms for a class of matrices. We apply the interval Gaussian algorithm to an $n \times n$ interval matrix $[A]$ the comparison matrix $\left\langle [A]\right\rangle $ of which is irreducible and diagonally dominant. We derive a new necessary and sufficient criterion for the feasibility of this method extending a recently given sufficient criterion.},
author = {Mayer, Günter, Pieper, Lars},
journal = {Applications of Mathematics},
keywords = {linear interval equations; Gaussian algorithm; interval Gaussian algorithm; linear systems of equations; criteria of feasibility; interval analysis; interval analysis; linear equations; interval Gaussian algorithm},
language = {eng},
number = {3},
pages = {205-220},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A necessary and sufficient criterion to guarantee feasibility of the interval Gaussian algorithm for a class of matrices},
url = {http://eudml.org/doc/15747},
volume = {38},
year = {1993},
}

TY - JOUR
AU - Mayer, Günter
AU - Pieper, Lars
TI - A necessary and sufficient criterion to guarantee feasibility of the interval Gaussian algorithm for a class of matrices
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 3
SP - 205
EP - 220
AB - A necessary and sufficient to guarantee feasibility of the interval Gaussian algorithms for a class of matrices. We apply the interval Gaussian algorithm to an $n \times n$ interval matrix $[A]$ the comparison matrix $\left\langle [A]\right\rangle $ of which is irreducible and diagonally dominant. We derive a new necessary and sufficient criterion for the feasibility of this method extending a recently given sufficient criterion.
LA - eng
KW - linear interval equations; Gaussian algorithm; interval Gaussian algorithm; linear systems of equations; criteria of feasibility; interval analysis; interval analysis; linear equations; interval Gaussian algorithm
UR - http://eudml.org/doc/15747
ER -

References

top
  1. G. Alefeld, Über die Durchführbarkeit des Gaußschen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten, Computing Suppl. 1 (1977), 15-19. (1977) Zbl0361.65017
  2. G. Alefeld, J. Herzberger, Introduction to Interval Computations, Academic Press, New York, 1983. (1983) Zbl0552.65041MR0733988
  3. H. Bauch K.-U. Jahn D. Oelschlägel H. Süsse, V. Wiebigke, Intervallmathematik, BSB B.G. Teubner Verlagsgesellschaft, 1987. (1987) MR0927085
  4. A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979. (1979) Zbl0484.15016MR0544666
  5. A. Frommer, G. Mayer, A new criterion to guarantee the feasibility of the interval Gaussian algorithm, SIAM J. Matrix Anal. Appl., in press. Zbl0777.65012
  6. R. Klatte U. Kulisch M. Neaga D. Ratz, Ch. Ullrich, PASCAL-XSC, Sprachbeschreibung mit Beispielen, Springer, Berlin, 1991. (1991) 
  7. G. Mayer, Old and new aspects of the interval Gaussian algorithm, Computer Arithmetic, Scientific Computation and Mathematical Modelling (E. Kaucher, S.M. Markov, G. Mayer, eds.), IMACS Annals on Computing and Applied Mathematics 12, Baltzer, Basel, 1991, pp. 329-349. (1991) MR1189151
  8. R.E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, N.J., 1966. (1966) Zbl0176.13301MR0231516
  9. A. Neumaier, 10.1016/0024-3795(84)90217-9, Linear Algebra Appl. 58 (1984), 273-325. (1984) Zbl0558.65019MR0739292DOI10.1016/0024-3795(84)90217-9
  10. A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990. (1990) Zbl0715.65030MR1100928
  11. K. Reichmann, 10.1007/BF02265315, Computing 22 (1979), 355-361. (1979) Zbl0423.65018MR0620062DOI10.1007/BF02265315
  12. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1963. (1963) Zbl0133.08602MR0158502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.