Some fixed point theorems

Josef Daneš

Commentationes Mathematicae Universitatis Carolinae (1968)

  • Volume: 009, Issue: 2, page 223-235
  • ISSN: 0010-2628

How to cite

top

Daneš, Josef. "Some fixed point theorems." Commentationes Mathematicae Universitatis Carolinae 009.2 (1968): 223-235. <http://eudml.org/doc/16272>.

@article{Daneš1968,
author = {Daneš, Josef},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {functional analysis},
language = {eng},
number = {2},
pages = {223-235},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some fixed point theorems},
url = {http://eudml.org/doc/16272},
volume = {009},
year = {1968},
}

TY - JOUR
AU - Daneš, Josef
TI - Some fixed point theorems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1968
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 009
IS - 2
SP - 223
EP - 235
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/16272
ER -

References

top
  1. S. EILENBERG D. MONTGOMERY, Fixed point theorems for multivalued transformations, Amer. Journ. of Math. 68, 1946, 214-222. (1946) MR0016676
  2. I. J. GLICKSBERG, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3, 1952, 170-174. (1952) Zbl0163.38301MR0046638
  3. S. KAKUTANI, A generalization of Brouwer's fixed point theorem, Duke Math. Journ. 8, 1941, 457-459. (1941) Zbl0061.40304MR0004776
  4. B. N. SADOVSKIJ, Ob odnom principe nepodvižnoj točki, Funkcional. analiz i ego prilož., 1, 1967, 74-76. (1967) 
  5. E. MICHAEL, Continuous selections, I, Ann. Math., 6З, 1956, 361-382. (1956) Zbl0071.15902MR0077107
  6. H. H. SCHAEFER, Topological vector spaces, N. Y., 1966. (1966) Zbl0141.30503MR0193469
  7. J. DIEUDONNÉ, Foundations of modern analysis, N. Y., 1960. (1960) MR0120319

Citations in EuDML Documents

top
  1. Josef Daneš, Generalized concentrative mappings and their fixed points
  2. Olga Hadžić, On multivalued mappings in paranormed spaces
  3. Josef Daneš, Fixed point theorems, Nemyckii and Uryson operators, and continuity of nonlinear mappings
  4. Alexandr S. Potapov, К теории вращения предельно компактных векторных полей
  5. Dariusz Bugajewski, On the existence of weak solutions of integral equations in Banach spaces
  6. Bogdan Rzepecki, On measures of noncompactness in topological vector spaces
  7. Josef Daneš, Some fixed point theorems in metric and Banach spaces
  8. Siegfried Hahn, Fixpunktsätze für limeskompakte mengenwertige Abbildungen in nicht notwendig lokalkonvexen topologischen Vektorräumen
  9. Bogdan Rzepecki, On the equation y ' = f ( t , y ) in Banach spaces
  10. Václav Zizler, Banach spaces with the differentiable norms

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.