On the equation in Banach spaces
Commentationes Mathematicae Universitatis Carolinae (1983)
- Volume: 024, Issue: 4, page 609-630
- ISSN: 0010-2628
Access Full Article
topHow to cite
topRzepecki, Bogdan. "On the equation $y^{\prime }=f(t,y)$ in Banach spaces." Commentationes Mathematicae Universitatis Carolinae 024.4 (1983): 609-630. <http://eudml.org/doc/17281>.
@article{Rzepecki1983,
author = {Rzepecki, Bogdan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Banach spaces; structure of the set of solutions; measure of noncompactness; Euler polygonals; extremal solutions},
language = {eng},
number = {4},
pages = {609-630},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the equation $y^\{\prime \}=f(t,y)$ in Banach spaces},
url = {http://eudml.org/doc/17281},
volume = {024},
year = {1983},
}
TY - JOUR
AU - Rzepecki, Bogdan
TI - On the equation $y^{\prime }=f(t,y)$ in Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1983
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 024
IS - 4
SP - 609
EP - 630
LA - eng
KW - Banach spaces; structure of the set of solutions; measure of noncompactness; Euler polygonals; extremal solutions
UR - http://eudml.org/doc/17281
ER -
References
top- A. AMBROSETTI, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. (1967) Zbl0174.46001MR0222426
- J. BANAŚ K. GOEBEL, Measure of noncompactness in Banach spaces, Lect. Notes Pure Applied Math. 60, Marcel Dekker, New York 1980. (1980) MR0591679
- J. BANAŚ A. HAJHOSZ S. WEDRYCHOWICZ, Some generalization of Szufla's theorem for ordinary differential equations in Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. 29 (1981), 459-464. (1981) MR0646334
- J. DANEŠ, Some fixed point theorems, Comment. Math. Univ. Carolinae 9 (1968), 223-235. (1968) MR0235435
- J. DANEŠ, On denslfying and related mappings and their application in nonlinear functional analysis, Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56. (1974) MR0361946
- K. DEIMLING, Ordinary differential equations in Banach spaces, Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. (1977) Zbl0361.34050MR0463601
- K. GOEBEL W. RZYMOWSKI, An existence theorem for the equation in Banach space, Bull. Acad. Polon. Sol., Sér. Sol. Math. Astronom. Phys. 28 (1970), 367-370. (1970) MR0269957
- M. A. KPACHOCEЛЬCKИЙ C. Г. KPEЙH, O npинсипe ycpeднения в нeлинейной механике, Ycnexн Mат. Hayx 10 (1955), 147-152. (1955)
- K. KURATOWSKI, Sur les espaces complete, Fund. Math. 15 (1930), 301-309. (1930)
- V. LAKSHMIKANTHAM S. LEELA, Differential and integral inequalities, Vol. 1, Academic Press, New York 1969. (1969)
- B. RZEPECKI, On the operator equation in Banach spaces, Demonstratio Math. 12 (1979), 189-201. (1979) Zbl0421.47034MR0542317
- B. RZEPECKI, Some properties of the set of solutions on an operator equation in a Banach space, Comment. Math. 22 (1978), 467-478. (1978) MR0519385
- B. RZEPECKI, On measure of noncompactness in topological spaces, Comment. Math. Univ. Carolinae 23 (1982), 105-116. (1982) MR0653354
- B. RZEPECKI, Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces, Comment. Math. Univ. Carolinae 23 (1982), 657-669. (1982) Zbl0517.34049MR0687561
- B. N. SADOVSKII, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 86-144. (1972) MR0428132
- A. STOKES, The application of a fixed-point theorem to a variety of nonlinear stability problems, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 231-235. (1959) MR0104006
- J. SZARSKI, Differential inequalities, PWN, Warszawa 1965. (1965) Zbl0135.25804MR0190409
- S. SZUFLA, Some remarks on ordinary differential equations in Banach spaces, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Pnys. 16 (1968), 795-800. (1968) Zbl0177.18902MR0239238
- S. SZUFLA, Solutions sets of nonlinear equations, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Pnys. 21 (1973), 971-976. (1973) Zbl0272.34086MR0344959
- S. SZUFLA, Some properties of the solutions set of ordinary differential equations, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Pnys. 22 (1974), 675-678. (1974) Zbl0289.34096MR0355245
- S. SZUFLA, Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 407-413. (1978) Zbl0384.34039MR0492684
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.