Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory
Commentationes Mathematicae Universitatis Carolinae (1968)
- Volume: 009, Issue: 4, page 627-635
- ISSN: 0010-2628
Access Full Article
topHow to cite
topReferences
top- Z. HEDRLÍN J. LAMBEK, How comprehensive is the category of semigroups, to appear in J. of Algebra. MR0237611
- Z. HEDRLÍN A. PULTR, On full embeddings of categories of algebras, Ill. J. of Math. 10 (1966), 392-406. (1966) MR0191858
- A. PULTR, Eine Bemerkung über volle Einbettungen von Kategorien von Algebren, Math. Ann. 178 (1968), 78-82. (1968) Zbl0174.30002MR0230794
- A. PULTR J. SICHLER, Primitive classes of algebras with two unary idempdent operations, containing all algebraic categories as full subcategories, to appear. MR0253969
- J. SICHLER, Category of commutative groupoids is binding, Comment. Math. Univ. Carolinae 8, 4 (1967), 753-755. (1967) Zbl0168.26703MR0228400
- J. SICHLER, can be strongly embedded into category of semigroups, Comment. Math. Univ. Carolinae 9, 2 (1968), 257-262. (1968) MR0237395
- V. TRNKOVÁ, Strong embeddings of category of all groupoids into category of semigroups, Comment. Math. Univ. Carolinae 9, 2 (1968), 251-256. (1968) MR0237394